一种跨设备生物特征识别方法技术

技术编号:9976030 阅读:229 留言:0更新日期:2014-04-28 12:08
本发明专利技术公开了一种跨设备生物特征识别方法。该方法包括以下步骤:对不同采集设备采集到的生物特征图像组分别进行预处理,并提取每幅生物特征图像的局部子区域特征;以相似度为导向选取关联特征;对关联特征训练得到分类器模型;对待测试的来自于不同采集设备的生物特征图像进行预处理和关联特征提取;将关联特征分别输入分类器模型中进行分类;对于来自不同采集设备的生物特征图像经过分类器模型的分类结果进行比对,最终得到跨设备生物特征识别结果。本发明专利技术选择到的特征能够很好的克服跨设备图像比对中带来的噪声,提高跨设备生物特征图像识别的性能,可用于大规模的生物特征识别的身份认证系统和其他需要安全性防范的诸应用系统中。

【技术实现步骤摘要】
【专利摘要】本专利技术公开了。该方法包括以下步骤:对不同采集设备采集到的生物特征图像组分别进行预处理,并提取每幅生物特征图像的局部子区域特征;以相似度为导向选取关联特征;对关联特征训练得到分类器模型;对待测试的来自于不同采集设备的生物特征图像进行预处理和关联特征提取;将关联特征分别输入分类器模型中进行分类;对于来自不同采集设备的生物特征图像经过分类器模型的分类结果进行比对,最终得到跨设备生物特征识别结果。本专利技术选择到的特征能够很好的克服跨设备图像比对中带来的噪声,提高跨设备生物特征图像识别的性能,可用于大规模的生物特征识别的身份认证系统和其他需要安全性防范的诸应用系统中。【专利说明】
本专利技术涉及数字图像处理、模式识别和统计学习等
,特别是通过提取针对跨设备的关联特征空间的图像比对的关联特征来进行生物特征的识别。
技术介绍
身份识别是社会生活的基本问题,不仅关系于个人的利益,也关系于国家的安全和社会的稳定。由于传统的身份认证方式如密码、门禁卡等存在一定的局限性,生物特征识别作为新型的身份认证手段越来越受到大家的欢迎。而随着人类社会信息化进程的深入发展,各种生物图像获取装置呈现出广泛发展的趋势,同时互联网的图像和视频数据的规模呈爆炸式增长,为生物特征识别提供了新的机遇和挑战。例如“平安城市”工程建设将在全国各地部署千万级别的高清监控终端,其中生物特征是确定人员身份的重要手段。同时我国每年新增数以亿计的智能手机和平板电脑上的千万像素高清摄像头构建了广泛分布的移动视觉感知平台,这为采集多种模态的生物特征提供了新的途径。以虹膜识别为例,虹膜识别是基于人眼虹膜纹理的特征来进行人的身份识别的一种识别方法,具有唯一性、稳定性、非侵犯性等特点,由于其可靠性,已经广泛应用到机场、海关、银行等场合的身份鉴别。虹膜图像获取设备可以是近红外相对于可见光、CCD相对于CMOS、高清相对于低分辨率、固定式相对于移动式、专用装置相对于普通相机等,用户状态可以是近距离相对于远距离、静态相对于动态(行进中)、眼镜相对于裸眼、正视相对于斜视等,虹膜图像来源的网络环境可以是物联网、互联网、移动互联网等,总之虹膜图像的数据来源呈现多元化的趋势。而不同的生产厂商在生产自己的虹膜识别系统的时候,都会设计出不同的上述提到的组件,从而导致获取的虹膜图像在分辨率、对比度、纹理细节、形变等方面有较大的差异。当来自于不同设备采集到的虹膜图像进行比对的时候,虹膜识别的准确将会大大降低。目前在跨设备的虹膜识别研究领域,近两年来学术界才有关于跨设备虹膜识别的讨论,指出了虹膜传感器和虹膜识别算法的选择都会对虹膜识别的准确率产生影响。随后 度学者 Arora 等人(Arora, S.S.;Vatsa, M.;Singh, R.;Jain, A., " On iris camerainteroperability, " Biometrics:Theory,Applications and Systems(BTAS2012))为角军决该问题,提出对需要比对的图像,先进行虹膜传感器分类,然后对其进行一定的图像增强方法来提高虹膜识别设备的互用性。跨设备的人脸识别的方法一般主要有两大类,一类以合成为主,即将来自一个人脸采集设备的图像转化到另一个人脸采集设备的图像空间,从而实现同类图像的比对。另一类以子空间方法为主,即将两类来自不同采集设备的图像共同转化到相同的子空间中去进行比对。其他诸如跨设备的指纹、掌纹等生物特征模态之间的比对也有了一定的发展。但是之前的方法很少从图像本身的特点进行分析。因此,本专利技术考虑从特征层面出发,通过选择出一组最优特征,来更好的表达跨设备的生物特征图像的特性,从而达到鲁棒跨设备的生物特征图像识别的目标。
技术实现思路
本专利技术的目的是提供,通过抽取出最优的描述跨设备图像纹理的特征,来提高跨设备生物特征图像识别的准确率和稳定性。为了实现上述目的,本专利技术提出的包括以下步骤:步骤SI,对不同采集设备采集到的生物特征图像组分别进行预处理,并提取所述生物特征图像组中每幅生物特征图像的局部子区域特征;步骤S2,以相似度为导向,从所述步骤SI提取到的局部子区域特征中选取关联特征;步骤S3,对所述步骤S2得到的关联特征,训练学习得到分类器模型;步骤S4,输入待测试的来自于不同采集设备的生物特征图像,并按照所述步骤SI和步骤S2分别对待测试生物特征图像进行预处理和关联特征提取;步骤S5,将所述步骤S4提取得到的关联特征分别输入所述步骤S3得到的分类器模型中,进行分类;步骤S6,对于来自不同采集设备的生物特征图像经过分类器模型的分类结果进行比对,最终得到跨设备生物特征识别结果。本专利技术提出的一种跨设备生物特征图像识别的关联特征选择方法,对于提高跨设备生物特征图像识别准确性和鲁棒性具有重要的意义,其主要优点如下:1.本专利技术使用的关联特征选择方法,充分利用了同设备分类性能较好的特征的选择,同时又考虑了跨设备的相关特征的选择,从而综合选择出适合于跨设备生物特征图像识别的鲁棒特征。2.本专利技术对跨设备特征空间的特征权重进行约束,构建跨设备特征空间的关系,以保证不同特征空间,选择出的特征具有相似性,即相似的特征分类能力;并通过对各自的同特征空间的回归误差进行约束,以保证所选择的特征能够在同特征空间中具有较强的分类性能。3.本专利技术采用了线性规划的方法解决优化关联特征选择问题。该方法具有较快的收敛速度。4.本专利技术可以应用到多种不同模态的跨设备身份鉴别问题中。【专利附图】【附图说明】图1是本专利技术跨设备生物特征识别方法的流程图;图2 (a)、图2 (b)、图2 (C)、图2 (d)、图2 (e)、图2 (f)分别是来自于不同采集设备的虹膜图像;图3是来自于不同采集设备的人脸图像;图4是来自于不同采集设备的指纹图像。【具体实施方式】为使本专利技术的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本专利技术进一步详细说明。本专利技术通过构建跨设备特征空间的关系的同时,对单个设备特征空间的回归误差进行约束,来学习到跨设备的生物特征图像的多组特征权重。通过对该多组特征权重进行排序等操作,选择出最终的适用于表达来自于多种不同设备采集到的生物特征图像的特征,使其在跨设备的生物特征图像比对中,仍然具有较高的准确性能。图1是本专利技术跨设备生物特征识别方法的流程图,如图1所示,本专利技术方法包括以下步骤:步骤SI,对不同采集设备采集到的生物特征图像组分别进行预处理,并提取所述生物特征图像组中每幅生物特征图像的局部子区域特征;所述预处理包括生物特征定位和归一化等处理。在本专利技术一实施例中,采用区域多级子定序测量特征对所述生物特征图像中的生物特征进行表达,以得到相应生物特征图像的局部子区域特征。优选地,所述步骤SI进一步包括如下步骤:步骤S11,将经过预处理后得到的生物特征图像分割成多个局部子区域;步骤S12,采用多级子滤波器对每个局部子区域进行滤波,抽取相应局部子区域的定序测量特征作为该局部子区域的特征以表达该局部子区域的生物特征。步骤S2,以相似度为导向,从所述步骤SI提取到的局部子区域特征中选取关联特征;所述关联特征是适用于关联特征空间的分类性能最强的特征。优选地,所述步骤S2进一本文档来自技高网
...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:谭铁牛孙哲南赫然校利虎
申请(专利权)人:中国科学院自动化研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1