当前位置: 首页 > 专利查询>山西大学专利>正文

一种皮肤镜病灶自动分割方法技术

技术编号:9794902 阅读:137 留言:0更新日期:2014-03-21 21:11
本发明专利技术涉及一种医学图像处理技术中的皮肤镜病灶自动分割方法,其包括以下步骤:病灶区域检测与提取:对图像中的病灶区域和背景区域进行初步划分,提取病灶区域的形状、位置和轮廓;活动轮廓模型分割:根据病灶区域的轮廓构造活动轮廓模型的初始曲线,并建立相应的能量泛函。根据水平集方法和曲线演化理论,通过偏微分求解得到满足能量泛函最小化的曲线,将病灶区域从图像中自动分割出来。本发明专利技术的方法依据皮肤镜病灶区域与周围区域的差异性,对病灶区域进行自动检测和分割,该方法对病灶分割准确、效率高,具有很好的实用性,且无需人工介入,可以辅助皮肤科医生进行更精确的病灶分析和诊断。

【技术实现步骤摘要】

本专利技术涉及医学图像处理
,具体来说是。
技术介绍
皮肤镜又称皮表透光显微镜,是一种观察活体皮肤表面以下微细结构和色素的无创性显微图像分析技术。它可以观察到表皮下部、真皮乳头层和真皮深层等肉眼不可见的影像结构与特征,这些特征与皮肤组织病理学的变化有着特殊和相对明确的对应关系,根据这些对应关系确定了皮肤镜诊断的敏感性、特异性。最新的研究亦显示,皮肤镜对恶性黑色素瘤诊断的专一性可以达到98%,甚至比临床诊断还要高。因此,皮肤镜是一个相当方便、非侵入性、诊断率高、值得信赖的医学辅助工具。然而,皮肤镜检测产生的图像数据量很大,海量的图像直接导致皮肤科医生工作量的增加,从而有可能增加漏诊和误诊的几率。此外,在图像采集时,由于采集装置硬件参数设置的不合理,外界环境的影响如光照、遮挡以及采集者的主观因素等影响,都会导致图像采集质量的下降,如模糊、带有噪声和毛发、对比度太小、光照不均匀等,从而影响后续的图像分割以及目标特征提取的准确性,并导致错误的分析结果。因此,皮肤镜病灶的自动分割是一个非常有挑战性的工作。医学图像处理作为数字图像和生物信息处理研究领域的一个重要内容,近年来受到了越来越多研究者的重视。图像处理技术的发展及其在医学影像中的应用,也为医学研究和实际临床应用提供了更加丰富的医学信息。近年来,医学图像处理用于计算机辅助检测与诊断已成为了研究热点,而对于影像中关于人体器官、肿瘤等病灶区域的检测和分割则是其中主要的研究方向之一,因此借助于计算机模型,可以很好地提高病灶分割的准确性和科学性。目前,研究人员已经提出一些皮肤镜病灶自动分割方法。例如,针对皮肤病灶中常见的黑素细胞肿瘤,田庆飞等人提出一种综合图像分割方法,首先应用统计区域融合方法将图像分割成多块纹理一致的区域,然后以图像HSV空间的H和S分量为特征,使用K均值聚类算法将图像聚为9类,最后,将聚类结果在HSV颜色空间的H和S分量分别映射到[0,I]区间,再分别对H和S分量取阈值,得到最终的边界分割结果。该方法对复杂肿瘤图像的处理效果明显优于之前的一些方法,但对毛发较多的图像处理结果不理想。谢凤英等人也提出了一种基于改进自生成神经网络的皮肤镜黑色素细胞瘤图像分割方法,首先采用区域生长方法将图像进行粗分割,然后将每一个子区域看作一个叶节点,根据节点之间的相邻关系定义连接规则,最后采用自生成神经网络对这些节点进行聚类,完成黑色素细胞瘤的分割。但这种方法的分割结果依赖于基于区域生长的预分割。Grana等人实现了一种简单有效的自动分割方法,首先采用大律阈值法自动分割图像,然后用K个点作样条插值获得光滑的边界曲线。但对于病灶边缘比较不规则的图像,该方法效果并不理想。Tanaka等人先用中值滤波器去除噪声,然后用Laplacian直方图方法和判别式准则实现二值化并抽取出皮肤病灶的轮廓。综上所述,虽然现有的方法可以分割皮肤镜图像中的病灶区域,但仍有不足,有些方法对复杂图像处理的效果不理想,有些方法依赖于预分割。另一类方法皮肤镜病灶的分割方法是基于活动轮廓模型的,但这类方法中病灶区域的初始曲线通常得由用户指定,导致了人工介入,对于大量的皮肤镜检查图像的实时分割和诊断是不适用的。
技术实现思路
针对现有皮肤镜病灶分割需要人工介入、分割不够精确等不足,本专利技术要解决的技术问题是提供一种计算机辅助的皮肤镜病灶自动分割方法。为解决上述技术问题,本专利技术采用的技术方案是:本专利技术皮肤镜病灶自动分割方法包括以下步骤:病灶区域检测与提取:对于存在不同类型病灶的皮肤镜检查图像,通过对图像进行频率域变换,之后计算谱残差,并重构图像得到显著图,获得全局显著信息,对图像中的病灶区域和背景区域进行初步划分,提取病灶区域的位置、形状和轮廓;活动轮廓模型分割:将病灶区域的轮廓作为活动轮廓模型的初始曲线,建立能量泛函,将能量泛函转化为水平集函数的表示形式,初始曲线为零水平集函数,最后通过梯度下降法求解得到满足能量泛函最小化的曲线,将病灶区域从图像中自动分割出来。所述病灶区域检测与提取包括以下步骤:对皮肤镜图像进行预处理,包括去噪、亮度调整和平滑运算;通过图像频率域变换,计算图像的谱残差;通过对谱残差进行频率域逆变换,得到重构图像,并进行平滑处理获得病灶区域更准确的显著图;采用最大类间方差法、局部阈值法、动态阈值法对显著图进行二值化,将图像初步划分为病灶区域和背景区域;采用形态学算子中的膨胀、腐蚀、开、闭、最大包围矩形和提取轮廓运算提取二值图像中关于病灶区域的形状信息,并求得图像中病灶区域的轮廓。所述活动轮廓模型分割包括以下步骤:将病灶区域的轮廓作为活动轮廓模型的初始曲线,构造能量泛函;根据水平集方法和曲线演化理论,将初始曲线看作零水平集函数,把能量泛函转化为水平集函数的表示形式;通过梯度下降法求解能量泛函所对应的欧拉一拉格朗日方程,满足能量泛函最小化的曲线对应了病灶区域的轮廓,将病灶区域从图像中分割出来。本专利技术具有以下有益效果及优点:本专利技术的方法依据皮肤镜病灶区域与周围区域的特征差异性,对病灶区域进行自动检测和分割,该方法对病灶分割准确、效率高,具有很好的实用性,可以辅助医生进行更精确的病灶分析和诊断。【附图说明】图1为本专利技术方法的整体流程图。图2为本专利技术方法处理的病灶区域和背景区域图像。图3为本专利技术方法待分割的存在病灶的皮肤镜图像。图4为采用本专利技术方法在皮肤镜图像上的分割结果。【具体实施方式】以下结合附图和具体实施例对本专利技术进行说明,但本专利技术不限于本实施例。本专利技术皮肤镜病灶自动分割方法利用皮肤镜检查图像中病灶区域与其邻域区域的差异性,对图像进行初步划分,获取病灶区域的位置、形状和轮廓信息,然后基于这些先验信息构造活动轮廓模型用于病灶区域的自动分割,如图1所示,本方法包括以下步骤:对于存在不同类型病灶的皮肤镜检查图像,通过对图像进行频率域变换,之后计算谱残差,重构得到显著图,获得全局显著信息,对图像中的病灶区域和背景区域进行初步划分,提取病灶区域的位置、形状和轮廓;活动轮廓模型分割:将病灶区域的轮廓作为活动轮廓模型的初始曲线,建立能量泛函,将能量泛函转化为水平集函数的表示形式,初始曲线为零水平集函数,最后通过梯度下降法求解得到满足能量泛函最小化的曲线,将病灶区域从图像中自动分割出来。1、病灶区域检测与提取如图2所示,在本步骤中,需要进行病灶区域的检测与提取,即从待分割的皮肤镜图像I(x,y)中获取病灶的形状信息,将图像初步划分为病灶区域和背景区域。一种具体实现方法为:I)对皮肤镜图像进行预处理,包括图像去噪、亮度调整和平滑运算,如图2(a)所示;2)对图像进行频率域变换,之后计算图像的谱残差R(I)=L(I)-fn*L(I),其中,L (I)是图像频率域变换的对数谱,频率域变换可利用Fourier变换、快速Fourier变换以及其它以Fourier变换为基础的变换来实现,fn为高斯均值滤波,*为卷积运算;3)通过对谱残差进行频率域逆变换得到重构图像I’(x,y) =ITF [exp (R(I)+P (I))]2,其中,ITF表示频率域逆变换,可利用逆Fourier变换、逆快速Fourier变换以及其它以Fourier变换为基础的逆变换,exp表示指数运算,P(I)为图像频率域变本文档来自技高网
...

【技术保护点】
一种皮肤镜病灶自动分割方法,其特征在于包括以下步骤:病灶区域检测与提取:对于存在不同类型病灶的皮肤镜检查图像,通过对图像进行频率域变换,之后计算谱残差,重构得到显著图,获得全局显著信息,对图像中的病灶区域和背景区域进行初步划分,提取病灶区域的位置、形状和轮廓;活动轮廓模型分割:将病灶区域的轮廓作为活动轮廓模型的初始曲线,建立能量泛函,将能量泛函转化为水平集函数的表示形式,初始曲线为零水平集函数,最后通过梯度下降法求解得到满足能量泛函最小化的曲线,将病灶区域从图像中自动分割出来。

【技术特征摘要】
1.一种皮肤镜病灶自动分割方法,其特征在于包括以下步骤: 病灶区域检测与提取:对于存在不同类型病灶的皮肤镜检查图像,通过对图像进行频率域变换,之后计算谱残差,重构得到显著图,获得全局显著信息,对图像中的病灶区域和背景区域进行初步划分,提取病灶区域的位置、形状和轮廓; 活动轮廓模型分割:将病灶区域的轮廓作为活动轮廓模型的初始曲线,建立能量泛函,将能量泛函转化为水平集函数的表示形式,初始曲线为零水平集函数,最后通过梯度下降法求解得到满足能量泛函最小化的曲线,将病灶区域从图像中自动分割出来。2.按权利要求1所述的皮肤镜病灶自动分割方法,其特征在于所述频率域变换包括Fourier变换、快速Fourier变换以及其它以Fourier变换为基础的变换。3.按权利要求2所述的皮肤镜病灶自动分割方法,其特征在于频率域变换之前对图像进行预处理,包括去噪、亮度调整和平滑运算。4.按权利要求1所述的皮肤镜病灶自动分割方法,其特征在于所述显著图的获取是通过对谱残差进行频率域逆变换重构得到的。5.按权利要求4所述的皮肤镜病灶自动分割方法,其特征在于所述逆变换包括逆Fourier变换、逆快速Fourier变换以及其它以Fourier变换为基础的逆变换。6.按权利要求4所述的皮肤镜病...

【专利技术属性】
技术研发人员:王文剑白雪飞
申请(专利权)人:山西大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1