一种基于激光拉曼Mapping测定流体包裹体气液比的方法技术

技术编号:9693627 阅读:112 留言:0更新日期:2014-02-20 22:26
本发明专利技术涉及一种基于激光拉曼Mapping测定流体包裹体气液比的方法,通过激光拉曼的自动样品台(X、Y和Z轴三个方向)实现三维空间的组分测试分析。首先分别通过对X-Y轴、X-Z轴的Mapping测试分析获取流体包裹体气相和液相组分光谱在多个二维平面上的展布;在此基础上,通过以上构建的三维立体空间气相、液相组分展布,得到包裹体长、宽、高三维度量参数;进一步利用椭球体体积计算公式,获得单个流体包裹体在某一温度(通常为室温)时气体部分和液体部分的精确体积比,即气液比。该方法既可用于烃类包裹体,也可用于盐水包裹体,为古流体温度、压力计算等研究提供了新的技术手段。

【技术实现步骤摘要】
—种基于激光拉曼Mapping测定流体包裹体气液比的方法
本专利技术涉及石油地质勘探开发
,具体涉及利用激光拉曼Mapping技术测定流体包裹体气液比的方法。
技术介绍
:流体包裹体是矿物在结晶生长过程中被捕获并保存在矿物晶体缺陷中的原始地质流体,是记录成岩、成矿(藏)作用及其条件的显微古流体样品,通过对保存在矿物中流体包裹体分析研究,可以揭示不同时期成岩成矿(藏)物化条件、流体成分、物质来源和地质作用过程等。按组成性质的不同,流体包裹体划分为烃包裹体、含烃盐水包裹体和无荧光的盐水包裹体。气液比是指一个流体包裹体在某一温度(通常为室温)时气体部分和液体部分的体积比,是由特定流体体系PVT性质决定的。重构含油气盆地古压力历史的一项关键技术参数就是流体包裹体的气液比,所以流体包裹体气液比的准确性对包裹体捕获温度和捕获压力的计算有很大的影响。激光拉曼光谱是一种非破坏性测定物质分子成分的微观分析技术,是基于激光光子与物质分子发生非弹性碰撞后,改变原有入射频率的一种分子散射光谱。Mapping是激光拉曼仪一种新的成像技术,其利用软件控制自动样品平台(X、Y和Z轴三个方向)移动,样品被逐点记录,每个点会在检测器上成像,从而可以实现空间上更精细的成像测试分析。目前获取流体包裹体气液比的方法都存在不足:①目估法,此方法误差大;②共聚焦激光扫描显微镜(CLSM),其原理是根据包裹体液相部分和气相部分荧光特征的不同刻画出气相、液相的展布,由于液相部分发出的荧光会照亮气泡边缘部分,使气泡看起来变小,这会使包裹体的气液比减小,且此方法只适用于烃类包裹体,而对于在地质样品中大量存在的盐水包裹体由于不发荧光,无法应用此方法计算;③透光+荧光联合分析,需人工勾画,操作难度大,且不精确。
技术实现思路
:本专利技术的目的是提供一种有效的、具有可操作性的基于激光拉曼Mapping技术获得流体包裹体精确气液比的方法,提高了储层古温压模拟分析的有效性,同时也解决了不发荧光的流体包裹体(如盐水包裹体)的气液比无法精确求取的问题。为了实现上述目的,本专利技术提供了以下技术方案:步骤1:对岩石样品进行制片,磨制两面抛光薄片,获取常规流体包裹体薄片;步骤2:进行显微镜下流体包裹体观察分析;步骤3:对激光拉曼光谱仪进行标样校正;步骤4:对流体包裹体在拉曼仪器上进行气相、液相成分的测试分析;步骤5:选定Mapping范围,设置步长,进行X-Y轴方向的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维平面上的展布;步骤6:选定Mapping范围,设置步长,进行X-Z轴的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在此二维平面上的展布;步骤7:在上述步骤5、步骤6分析的基础上构建了流体包裹体三维立体空间上气相、液相组分展布,通过拉曼光谱仪读取流体包裹体气相和液相的分布情况,得到流体包裹体气相和液相三维空间的体积,求得流体包裹体的气液比。与以往获得流体包裹体气液比的目估法或者共聚焦激光扫描显微镜方法等相比,本专利技术具有两个显著特点:1)立足于激光拉曼Mapping分析技术,易于操作,分析精度高,为流体包裹体气液比的精确获取提供了一种新的技术手段;2)提出的方法不仅限于烃类包裹体气液比的测定,而且也可以应用到盐水包裹体,解决了不发荧光的流体包裹体气液比无法精确获取的科学难题。【附图说明】图1是基于激光拉曼Mapping测定流体包裹体气液比的流程图。图2是流体包裹体气相、液相部分的拉曼分析图,其中气相组分为CO2,液相组分为H2O。【具体实施方式】下面以一地质样品为例,结合附图,对本专利技术的具体实施方法作进一步的详细说明。本实验采用的激光拉曼光谱仪型号为LabRAM Aramis (法国HORIBA JobinYvon公司制造)。具体步骤如下:第一步:样品准备对岩石样品进行制片,磨制两面抛光薄片,厚度为0.1?0.3mm,获取常规流体包裹体薄片。第二步:显微镜下观察流体包裹体进行显微镜下流体包裹体观察分析,包括大小、类型、产状、荧光特征等。第三步:对仪器进行标样校正首先需要用硅片(520.7cm-1)标样对拉曼光谱仪进行仪器校正,标样校正时选择633nm激光器,对硅片进行实时采谱,通过去背底、标峰位得到光谱的峰位,然后通过Setup菜单里的Instrument calibration将娃片峰位调到标准的520.7cm-1,以保证以下实验数据的准确性和高精度。下述步骤四、五、六的激光拉曼测定条件为:473nm激光器,光栅1800线,共焦针孔大小为400 μ m,狭缝为100 μ m,曝光时间为ls,扫描波数范围为100?4000CHT1,显微镜物镜100X,反射柯勒照明。第四步:对流体包裹体在拉曼仪器上进行气相、液相成分的测试分析在显微镜下找到分析的流体包裹体,对包裹体的气相和液相部分通过拉曼仪器进行单条谱图采集,确定了气相峰位表现为1280CHT1和1380CHT1双峰分布特征,由此可确定为二氧化碳(CO2),包裹体液相峰位范围在3000?3780CHT1之间,呈拱状,其成分为水(H2O)(见图2)。第五步:进行X-Y轴方向的Mapping分析首先将样品挪到做Mapping区域,确认激光光斑在样品中心位置,然后关掉激光;利用point mapping模式沿左上、右下、右上和左下依次选择四个点,然后在mappingprosities中将X、Y勾选上,选择single window方式,采谱时间设定为I秒,参数都设置好后点击Mapping acquisition让自动平台依次沿左上、右下、右上和左下四个点跑一圈;用方框选定做Mapping范围,设置X轴和Y轴方向的步长,本次实验步长均设定为I μ m,采谱范围改为多窗口模式,参数设置好后点击Mapping acquisition进行采谱测试分析,测试结束后得到Spim、Point、Map和Video四个窗口,同时保存Spim和Video窗口,来保存我们测得的流体包裹体Mapping原始数据;在Mapping光谱数据获得的基础上,在Spim窗口对所有光谱进行去背底和峰位拟合,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维平面上展布。第六步:进行X-Z轴方向的Mapping分析将样品挪到做Mapping区域,确认激光光斑在样品中心位直,然后关掉激光;利用point mapping模式沿左上、右下、右上和左下依次选择四个点,然后在mapping prosities中将X、Z勾选上,选择single window方式,采谱时间设定为I秒,参数都设置好后点击Mapping acquisition让自动平台依次沿左上、右下、右上和左下四个点跑一圈;用方框选定做Mapping范围,设定Z轴的范围在-35?35 μ m之间,X轴和Z轴方向的步长均设定为I μ m,采谱范围改为多窗口模式,参数设置好后点击Mapping acquisition进行采谱测试分析,测试结束后得到Spim、Point、Map和Vide本文档来自技高网
...

【技术保护点】
一种基于激光拉曼Mapping测定流体包裹体气液比的方法,其特征在于,包括以下步骤:步骤1:对岩石样品进行制片,磨制两面抛光薄片,获取常规流体包裹体薄片;步骤2:进行显微镜下包裹体观察分析;步骤3:对激光拉曼光谱仪进行标样校正;步骤4:对流体包裹体在拉曼仪器上进行气相、液相成分的测试分析;步骤5:选定Mapping范围,设置步长,进行X?Y轴方向的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维平面上的展布;步骤6:选定Mapping范围,设置步长,进行X?Z轴的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维空间上的展布;步骤7:在上述步骤5、步骤6分析的基础上构建了流体包裹体三维立体空间上气相、液相组分展布,通过拉曼光谱仪读取流体包裹体气相和液相的分布情况,得到流体包裹体气相和液相三维空间的体积,求得流体包裹体的气液比。

【技术特征摘要】
1.一种基于激光拉曼Mapping测定流体包裹体气液比的方法,其特征在于,包括以下步骤:步骤1:对岩石样品进行制片,磨制两面抛光薄片,获取常规流体包裹体薄片;步骤2:进行显微镜下包裹体观察分析;步骤3:对激光拉曼光谱仪进行标样校正;步骤4:对流体包裹体在拉曼仪器上进行气相、液相成分的测试分析;步骤5:选定Mapping范围,设置步长,进行X-Y轴方向的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维平面上的展布;步骤6:选定Mapping范围,设置步长,进行X-Z轴的Mapping分析,获得流体包裹体气相和液相的光谱分布,然后通过Model功能定义气相和液相这两种组分光谱,从而得到气相和液相组分在该二维空间上的展布;步骤7:在上述步骤5、步骤6分析的基础上构建了流体包裹体三维立体空间上气相、液相组分展布,通过拉曼光谱仪读取流体包裹体气相和液相的分布情况,得到流体包裹体气相和液相三维空间的体积,求得流体包裹体的气液比。2.根据权利要求1所述的一种基于激光拉曼Mapping测定流体包裹体气液比的方法,其特征在于,步骤I中薄片的厚度为0.1~0.3mm。3.根据权利要求1所述的一种基于激光拉曼Mapping测定流体包裹体气液比的方法,其特征在于,步骤3具体包括以下步骤:首先需要用520.7cm-1硅片标样对拉曼光谱仪进行仪器校正,标样校正时选择633nm激光器,对硅片进行实时采谱,通过去背底、标峰位得到光谱的峰位,然后通过Setup菜单里的Instrument calibration将娃片峰位调到标准的520.7cm 1O4.根据权利要求1所述的一种基于激光拉曼Mapping测定流体包裹体气液比的方法,其特征在于,步骤4、步骤5和步骤6的激光拉曼测定条件为:473nm激光器,光栅1800线,共焦针孔大小为400 μ m,狭缝为100 μ m,曝光时间为ls,显微镜选择100X物镜,反射柯勒照明。5.根据权利要求1或4所述的一种基于激光拉曼Mapping测定包裹体气液比的方法,其特征在于,步骤5具体包括以下步骤:首先将样品挪到做Mapping区域,确...

【专利技术属性】
技术研发人员:刘嘉庆李忠
申请(专利权)人:中国科学院地质与地球物理研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1