一种用于多基地声纳配置方式的模拟退火定位方法技术

技术编号:9641820 阅读:180 留言:0更新日期:2014-02-06 23:32
本发明专利技术提供了一种用于多基地声纳配置方式的模拟退火定位方法。发射站、接收站相对于目标位置获得距离及方位角的测量数据,利用观测数据对目标进行定位,得到相关定位方程组;根据定位参数与目标位置坐标的非线性关系,将定位方程组转化为非线性方程组,并用非线性优化方法进行解算;在多参数优化问题的求解过程中,将非线性定位方程组按照约束规则组合,建立目标函数,使用模拟退火算法循环比较步骤输出当前最优解,找到最佳匹配点。本方法充分利用各基站观测数据,解算精度更高,且算法能够收敛于最优解,找到最佳匹配点,实现对目标的有效定位,其算法所需的输入量更容易获得,方便工程使用。

【技术实现步骤摘要】
【专利摘要】本专利技术提供了。发射站、接收站相对于目标位置获得距离及方位角的测量数据,利用观测数据对目标进行定位,得到相关定位方程组;根据定位参数与目标位置坐标的非线性关系,将定位方程组转化为非线性方程组,并用非线性优化方法进行解算;在多参数优化问题的求解过程中,将非线性定位方程组按照约束规则组合,建立目标函数,使用模拟退火算法循环比较步骤输出当前最优解,找到最佳匹配点。本方法充分利用各基站观测数据,解算精度更高,且算法能够收敛于最优解,找到最佳匹配点,实现对目标的有效定位,其算法所需的输入量更容易获得,方便工程使用。【专利说明】—种用于多基地声纳配置方式的模拟退火定位方法
本专利技术属于信号处理领域,涉及到多基地声纳定位估计方法。
技术介绍
模拟退火算法是一种全局优化算法,与声纳对水下目标的定位寻优思路具有某种内在的联系。无论是水下二维或三维定位方式,都可以写出相应的非线性定位方程,若干个定位方程按照约束规则组合,便可写出模拟退火算法中类似的目标函数。一旦能够建立适当的目标函数,那么就可以依据Metropolis准则和退火规则找寻其最小值,即目标函数的最优解,也就是最终需要确定的目标坐标,实现对水下目标的定位估计。国内外目前公开的多基地声纳目标定位方法多采用最小二乘估计理论实现。刘若辰等人在“基于线性最小二乘方法的多基地声纳定位算法(电声技术,2011)”一文中进行了深入的研究和分析。该方法的主要思路是:将测量方程进行一定的数学变换,消去二次项,得到一组新的线性方程组,其线性方程组的解就是目标的位置估计。此方法将水下目标定位的非线性方程组消去关于目标位置的二次项,得到线性方程组后求解,增加了截断误差,影响了定位精度,且在多基地声纳系统配置中,站址布局的不同对算法的定位性能影响很大。国内外目前公开的利用模拟退火算法进行目标定位的领域主要集中在无线传感器网络领域。李玉增等人在“模拟退火算法在无线传感器网络定位中的应用(通信技术,2009)”一文中进行了深入的研究和分析。该方法的主要思路是:首先利用相关的测距技术得到信标节点和未知节点之间的距离,选取合适的目标函数。然后任意选择一个初始状态,计算目标函数值,并判断该值是否满足收敛条件。若目标函数值满足收敛条件则未知节点的坐标即为初始状态点的坐标;若不满足则在初始状态的基础上添加多次扰动,产生新的状态,并根据马尔可夫准则接收新的状态为当前状态,随后判断新值是否满足收敛条件。通过循环搜索,最终可以得到与未知节点实际坐标非常接近的实验结果。此方法思路与多基地声纳水下目标定位思路相近,有一定的理论参考价值,但在目标函数建立,Metropolis准则和退火规则的选取上又有所不同。目前国内外利用模拟退火算法来进行多基地声纳水下目标定位的参考文献尚未发现。
技术实现思路
为了克服现有技术的不足,本专利技术提供,给出了如何利用模拟退火算法进行水下目标定位估计的步骤。本专利技术不依赖于初始值的选取,可以给出明确的上限计算时间,在有效性及稳健性方面表现不错,且计算需要的测量数据容易获得,可以有效的计算出目标的位置坐标。本专利技术解决其技术问题所采用的技术方案包括以下步骤:I)在三个基站的T/R-R2型多基地声纳系统配置方式的二维平面内,发射站相对于目标位置可以获得目标斜距及方位角的测量数据,目标到两个接收站的测量数据可以获得距离和及方位角信息;同时利用这三组数据对目标进行定位,可以得到三组定位方程;2)假设定位参数的估计误差为零均值的高斯分布,根据定位参数与目标位置坐标的非线性关系,将三组定位方程的求解问题转化为非线性优化问题;3)在多参数优化问题的求解过程中,将三组非线性定位方程按照约束规则,建立目标函数; 4)模拟退火算法循环比较,包括以下步骤:①随机产生一个初始点Xtl (Xtl, y0),以该点作为当前最优点Xtjpt = X(i,并计算目标函数值 f (X0) = f (x0, y0);②设置初始温度T。,其中Ttl取值不小于200 ;③设置循环计数器的初值k=l ;④对当前最优点Xtjpt作一个随机扰动randn (I, 2),产生一个新的最优点Xn,计算新的目标函数f (Xn) = f (xN, yN),并计算目标函数的差值Δ f = f (Xn) -f (X0);⑤如果Λ f≤0,则接受新产生的最优点Xn为当前最优点Xopt = Xn ;如果Λ f > 0,计算 Metropolis 准则 Pb ;⑥判断是否满足Pb > ε , ε e (O, I);若不满足,跳到第⑦步;若满足,输出当前最优点,计算结束;⑦计算退火规则;如果Tk > Ttl,循环次数k+Ι,重新计算退火规则,否则,转向第④止/J/ O5)从发射站和接收站所得到的测量数据存在发射站距离误差drT、发射站方位角误差d θ τ、接收站距离和误差dp 1、接收站方位角误差d Θ i ;假设上述误差是零均值、彼此不相关的闻斯白噪声,对应的标准差分别为*°"ρ,和0"s,,站址测量误差的标准差为O s;计算目标的加权最小二乘估计误差协方差矩阵P.;6)根据二维平面内的目标定位精度几何解释GD0P,计算定位精度。以上步骤I) 一6)可以扩展到多基地声纳配置方式的三维空间内。只需增加Z轴方向上的测量信息,其算法的工作流程保持不变,但收敛速度和计算时间会有所增加。6所述步骤I)中三组定位方程为J.TJI+:2 JXmmfy I1-xI,IX/iI1.V —.V,Ip1r — MΘ、= IanP22\ι/Λ(y+2\ι/?IX+2\ι/ΛIJ/i+2HTIXV,一 VA = tan 1 -—.~—x — x2其中,目标的位置坐标为U,y),发射站坐标为UT,yT),两接收站的坐标分别为(X1, Y1), (x2, y2);对于发射站,可得到目标的斜距、方位角为(r,o),目标相对于两个接受站的距离和、方位角为【权利要求】1.,其特征在于包括下述步骤:1)在三个基站的T/R-R2型多基地声纳系统配置方式的二维平面内,发射站相对于目标位置可以获得目标斜距及方位角的测量数据,目标到两个接收站的测量数据可以获得距离和及方位角信息;同时利用这三组数据对目标进行定位,可以得到三组定位方程;2)假设定位参数的估计误差为零均值的高斯分布,根据定位参数与目标位置坐标的非线性关系,将三组定位方程的求解问题转化为非线性优化问题;3)在多参数优化问题的求解过程中,将三组非线性定位方程按照约束规则,建立目标函数;4)模拟退火算法循环比较,包括以下步骤:①随机产生一个初始点XtI(x0, y0),以该点作为当前最优点Xopt = 并计算目标函数值f (X0) = f (χ0, y0);②设置初始温度T。,其中Ttl取值不小于200;③设置循环计数器的初值k=l;④对当前最优点Xopt作一个随机扰动randn(I, 2),产生一个新的最优点Xn,计算新的目标函数f (Xn) = f (xN, yN),并计算目标函数的差值Δ f = f (Xn) -f (X0);⑤如果Δf≤0,则接受新产生的最优点Xn为当前最优点Xtjpt = Xn ;如果Δ f > 0,计算 Metropolis 准则 Pb ;⑥判断是否满足Pb本文档来自技高网
...

【技术保护点】
一种用于多基地声纳配置方式的模拟退火定位方法,其特征在于包括下述步骤:1)在三个基站的T/R?R2型多基地声纳系统配置方式的二维平面内,发射站相对于目标位置可以获得目标斜距及方位角的测量数据,目标到两个接收站的测量数据可以获得距离和及方位角信息;同时利用这三组数据对目标进行定位,可以得到三组定位方程;2)假设定位参数的估计误差为零均值的高斯分布,根据定位参数与目标位置坐标的非线性关系,将三组定位方程的求解问题转化为非线性优化问题;3)在多参数优化问题的求解过程中,将三组非线性定位方程按照约束规则,建立目标函数;4)模拟退火算法循环比较,包括以下步骤:①随机产生一个初始点X0(x0,y0),以该点作为当前最优点Xopt=X0,并计算目标函数值f(X0)=f(x0,y0);②设置初始温度T0,其中T0取值不小于200;③设置循环计数器的初值k=1;④对当前最优点Xopt作一个随机扰动randn(1,2),产生一个新的最优点XN,计算新的目标函数f(XN)=f(xN,yN),并计算目标函数的差值Δf=f(XN)?f(X0);⑤如果Δf≤0,则接受新产生的最优点XN为当前最优点Xopt=XN;如果Δf>0,计算Metropolis准则PB;⑥判断是否满足PB>ε,ε∈(0,1);若不满足,跳到第⑦步;若满足,输出当前最优点,计算结束;⑦计算退火规则;如果Tk>T0,循环次数k+1,重新计算退火规则,否则,转向第④步。5)从发射站和接收站所得到的测量数据存在发射站距离误差drT、发射站方位角误差dθT、接收站距离和误差dρi、接收站方位角误差dθi;假设上述误差是零均值、彼此不相关的高斯白噪声,对应的标准差分别为和站址测量误差的标准差为σs;计算目标的加权最小二乘估计误差协方差矩阵PWLS;6)根据二维平面内的目标定位精度几何解释GDOP,计算定位精度。FDA00003666504000011.jpg,FDA00003666504000012.jpg...

【技术特征摘要】

【专利技术属性】
技术研发人员:苟艳妮王英民陶林伟王关峰王奇王成诸国磊
申请(专利权)人:西北工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1