风力发电机组用低电压调控装置制造方法及图纸

技术编号:9619973 阅读:100 留言:0更新日期:2014-01-30 08:29
本发明专利技术公开了风力发电机组用低电压调控装置,包括固态开关、滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器。本发明专利技术采用大功率电力电子变流器和固态开关安装在风机和电网之间,当电力系统发生临时短路故障而造成电网电压下降时,快速提供有功功率和无功功率支撑,以维持风机定子侧并网点电压恒定,从而保证风机不脱网且稳定并网运行。不仅解决了风力发电中存在的低电压穿越这一技术难题,而且起到稳定系统电压、抑制系统电压波动、提高电能质量的作用,同时降低网络损耗,增加风电厂发电,降低对风机设备的冲击,更能避免风电机组同时全部切除的情况;并且该系统三相完全独立控制,可有效应对对称和非对称故障情况。

Low voltage regulating device for wind turbine generator set

The invention discloses a low voltage regulating device for a wind power generation unit, comprising a solid state switch, a filtering circuit, a rectifier circuit, an active power consumption circuit, a first high-power inverter and a second high-power inverter. The invention adopts high-power power electronic converters and solid-state switch is installed between the fan and the power grid, when the temporary short-circuit fault in power system caused by voltage drops, fast to provide reactive power support, in order to maintain the fan stator side point voltage constant, so as to ensure the fan off network and stable parallel operation. Not only solves the problem of low voltage in wind power generation through this technical problem, but also to stabilize the system voltage, suppress voltage fluctuation and improve power quality, and reduce network losses, increase the wind power generation, wind turbine equipment to reduce the impact, can avoid the wind turbine at the same time all of the situation the system is completely independent; and phase control, can effectively deal with the symmetrical and unsymmetrical fault condition.

【技术实现步骤摘要】
风力发电机组用低电压调控装置
本专利技术涉及风力发电低电压穿越领域,尤其涉及风力发电机组用低电压调控装置。
技术介绍
随着风力发电技术的快速发展和世界各国在政策上对可再生能源发电的重视,风力发电进入了一个快速发展期。风力机单机容量和风电场规模以及风力发电在电力系统中所占的份额都逐渐增大。大规模的风力发电并入电网对电网的规划建设、运行调度、分析控制、经济运行和电能质量均产生了一定的影响。为了促进风电场的开发和保证电力系统的安全稳定运行,欧洲、北美及澳大利亚的一些电力协会或电网公司都制定了风电场并网技术导则,我国也在2006年颁布了有关的国家标准和国家电网公司风电场接入电力系统技术规定。各国的风电场并网技术规定涉及到一些共性问题,包括功率控制、无功电压控制、低电压穿越能力等,各并网技术规定都提出了一些要求,其中低电压穿越被认为是对风电机组制造技术最大的挑战,因此迫切需要一种装置来解决目前在低电压穿越领域存在的问题。
技术实现思路
本专利技术的目的是提供风力发电机组用低电压调控装置,可以在电力系统发生临时短路故障而造成电网电压下降时,快速提供有功功率和无功功率支撑,维持风机定子侧并网点电压恒定,从而保证风机不脱网,且稳定并网运行,同时有利于电网电压及频率的恢复及稳定。本专利技术采用下述技术方案: 风力发电机组用低电压调控装置,包括固态开关、滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器,所述的固态开关一端连接发电机定子侧输出端,另一端连接电网接入端,所述的滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器依次分别与固态开关并联连接,所述的第一大功率逆变器的输出端连接发电机电力输出端,第二大功率逆变器的输出端连接电力系统的电力输入端。所述的固态开关由两个反并联的晶闸管与一个常开开关并联构成。整流电路由三个单相H桥电路构成,所述的单相H桥电路的桥臂上为两个全控型IGBT开关管串联,所述的三个单相H桥电路中由第一 IGBT开关管的集电极相连接形成整流电路的正向输出端,由第二 IGBT开关管的集电极相连接形成整流电路的负向输出端。所述的有功消耗电路包括负载电阻和全控型IGBT开关管,二者串联在整流电路的输出端。所述的滤波电路包括有两个电感和一个电容构成的π型滤波电路。所述的第一三相双绕组隔离变压器和第二三相双绕组隔离变压器的电路拓扑结构与整流电路完全相同。还包括第一三相双绕组隔离变压器和第二三相双绕组隔离变压器,第一三相双绕组隔离变压器串联在第一大功率逆变器的输出端和发电机电力输出端之间,第二三相双绕组隔离变压器串联在第二大功率逆变器的输出端和电力系统的电力输入端之间。所述的整流电路输出端并联有一个稳压电容。本专利技术采用大功率电力电子变流器和固态开关安装在风机和电网之间,当电力系统发生临时短路故障而造成电网电压下降时,快速提供有功功率和无功功率支撑,以维持风机定子侧并网点电压恒定,从而保证风机不脱网,且稳定并网运行,同时有利于电网电压及频率的恢复及稳定。不仅解决了风力发电中存在的低电压穿越这一技术难题。而且起到稳定系统电压、抑制系统电压波动、提高电能质量的作用,同时降低网络损耗,增加风电厂发电,降低对风机设备的冲击,更能避免风电机组同时全部切除的情况。并且该系统三相完全独立控制,可有效应对对称和非对称故障情况。【附图说明】图1为本专利技术的使用结构电路原理框图。【具体实施方式】如图1所示,风力发电机组用低电压调控装置(即低压穿越校正装置2),低电压调控装置2部分通过端子A、B与整个系统并联。低压穿越校正装置2包括固态开关4、滤波电路5、整流电路6、有功消耗电路、第一大功率逆变器7和第二大功率逆变器8,所述的固态开关4一端连接发电机定子侧输出端,另一端连接电网3接入端,所述的滤波电路5、整流电路6、有功消耗电路、第一大功率逆变器7和第二大功率逆变器8依次分别与固态开关4并联连接,所述的第一大功率逆变器7的输出端连接发电机电力输出端A,第二大功率逆变器的输出端连接电力系统的电力输入端B。所述的固态开关4由两个反并联的晶闸管与一个常开开关并联构成。可以实时根据图供电电网的电力情况做出对应开关动作。整流电路6由三个单相H桥电路构成,所述的单相H桥电路的桥臂上为两个全控型IGBT开关管串联,第一全控型IGBT开关管和第二全控型IGBT开关管。所述的三相中每个单相H桥电路中的第一全控型IGBT开关管的集电极相连接形成整流电路的正向输出端,第二全控型IGBT开关管的集电极相连接形成整流电路的负向输出端。所述的有功消耗电路包括负载电阻R和全控型IGBTl开关管,二者串联在整流电路6的输出端之间,优选的在整流电路6的输出端还可以设置一稳压电容(图中未示出),使整流电路输出电流更加稳定。本专利技术直接从发电机定子侧获取能量,通过大功率整流装置获得稳定的直流母线电压,避免了附加直流储能设备所带来的体积、成本、安装和运行维护等方面的投入。所述的滤波电路5包括有两个电感和一个电容Cl构成的型滤波电路,用来消除逆变器高频变换时产生的高次谐波,以得到标准的正弦波。所述的第一大功率逆变器7和第二大功率逆变器8与整流电路6的电路拓扑结构完全相同。用于提供的直流母线电压进行功率变换,以产生无功补偿电压。还包括第一三相双绕组隔离变压器9和第二三相双绕组隔离变压器10,所述隔离变压器的变比取1:1。第一三相双绕组隔离变压器9串联在第一大功率逆变器7的输出端和发电机I电力输出端之间,第二三相双绕组隔离变压器10串联在第二大功率逆变器8的输出端和电力系统3的电力输入端之间。本专利技术具体工作原理简述如下:电网正常运行期间,低电压调控装置2通过固态开关4被旁路。因为发电机靠转差率调整负荷,发电机定子频率由电网频率决定,在运行过程中要吸收大量无功功率,第一大功率逆变器7可对风机快速提供无功功率支撑,维持风力发电电源接入点电压A的稳定。当电网电压出现故障而产生电压暂降时,固态开关4迅速动作,低电压调控装置B全部被投入电路。当电网故障发生时,为了不损坏风电机组的稳定运行以及造成大规模有功功率的浪费,风机组保持在网正常运行并且提供恒定的有功功率输出,即此时A点电压恒定,B点电压降低(幅值为0.2piTlpu),故障信号通过控制固体开关4中的双向晶闸管导通使得低压调控装置2全部投入电路:此时由于风电机组I正常运行,为了维持整个系统的动态功率平衡,风电机组I提供的有功功率由整流电路6整流以后提供给负载R消耗,并且此时整流电路6向AB两个端子之间注入无功,可看作注入反向电压用来维持端子A电压的恒定,使风电机组正常运行。并且同时通过控制第二大功率逆变器8的全控器件的脉冲信号向系统注入有功功率,给电网提供有功功率的调节、支撑与反馈,已达到整个系统功率的动态平衡。当电网电压恢复正常后,固体开关4中的双向晶闸管导通使得低压调控装置2中的整流电路6和第二大功率逆变器8被旁路,封锁脉冲发送,并退出运行。本文档来自技高网...

【技术保护点】
风力发电机组用低电压调控装置,其特征在于:包括固态开关、滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器,所述的固态开关一端连接发电机定子侧输出端,另一端连接电网接入端,所述的滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器依次分别与固态开关并联连接,所述的第一大功率逆变器的输出端连接发电机电力输出端,第二大功率逆变器的输出端连接电力系统的电力输入端。

【技术特征摘要】
1.风力发电机组用低电压调控装置,其特征在于:包括固态开关、滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器,所述的固态开关一端连接发电机定子侧输出端,另一端连接电网接入端,所述的滤波电路、整流电路、有功消耗电路、第一大功率逆变器和第二大功率逆变器依次分别与固态开关并联连接,所述的第一大功率逆变器的输出端连接发电机电力输出端,第二大功率逆变器的输出端连接电力系统的电力输入端。2.根据权利要求1所述的风力发电机组用低电压调控装置,其特征在于:所述的固态开关由两个反并联的晶闸管与一个常开开关并联构成。3.根据权利要求2所述的风力发电机组用低电压调控装置,其特征在于:整流电路由三个单相H桥电路构成,所述的单相H桥电路的桥臂上为两个全控型IGBT开关管串联,所述的三个单相H桥电路中由第一 IGBT开关管的集电极相连接形成整流电路的正向输出端,由第二 IGBT开关管的集电极相连接形成整流电路的负向输出...

【专利技术属性】
技术研发人员:申燕飞刘湘笠李宗刘存凯唐旻张亮宋文卓董平先金曼郭新菊席小娟路晓军郭正位张少辉齐道坤景川
申请(专利权)人:国家电网公司国网河南省电力公司经济技术研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1