当前位置: 首页 > 专利查询>东南大学专利>正文

永磁同步电机的无传感器矢量控制系统和控制方法技术方案

技术编号:9598933 阅读:165 留言:0更新日期:2014-01-23 03:50
本发明专利技术提供一种永磁同步电机的无传感器矢量控制系统和控制方法,该方法包括启动-低速控制、中高速控制和过渡区域控制:启动-低速控制基于回归模型分别建立了低速转子位置观测器和低速转子速度观测器;中高速控制通过传统滑模观测器方法实现;过渡区域控制同时考虑转速和转子位置误差两个因素,保证切换过程的平滑。本发明专利技术的方案可保证无传感器永磁同步电机在全速范围内的可靠运行,在低速段建模过程与电机数学模型无关且不需要叠加高频信号,估计结果不会受到参数精度的影响,中高速控制仍通过滑模观测器实现,保留滑模观测器鲁棒性强且性能稳定的特点。两种方法的切换过程同时考虑转速和转子位置误差两个因素,保证了切换过程的平滑过渡。

【技术实现步骤摘要】
【专利摘要】本专利技术提供一种,该方法包括启动-低速控制、中高速控制和过渡区域控制:启动-低速控制基于回归模型分别建立了低速转子位置观测器和低速转子速度观测器;中高速控制通过传统滑模观测器方法实现;过渡区域控制同时考虑转速和转子位置误差两个因素,保证切换过程的平滑。本专利技术的方案可保证无传感器永磁同步电机在全速范围内的可靠运行,在低速段建模过程与电机数学模型无关且不需要叠加高频信号,估计结果不会受到参数精度的影响,中高速控制仍通过滑模观测器实现,保留滑模观测器鲁棒性强且性能稳定的特点。两种方法的切换过程同时考虑转速和转子位置误差两个因素,保证了切换过程的平滑过渡。【专利说明】
本专利技术涉及永磁同步电机的控制领域,具体而言涉及一种,可在不使用位置和速度传感器的情况下,实现永磁同步电机在启动、低速、中速至全速范围内的无传感器矢量控制。
技术介绍
永磁同步电机由绕线式同步电动机发展而来,具有效率高、结构简单、易于控制、性能优良等优点。其控制过程相比异步电机而言较为简单,随着永磁材料性能不断提高和价格不断下降,永磁同步电机的控制系统应用占据着日益重要的地位。在普通永磁同步电机的矢量控制调速系统中,为实现电机的速度闭环和矢量变换,需要通过光电编码盘等传感设备测量转子的位置与速度信号。然而,由于光电编码盘的存在,不但增加了成本,还使得电机的轴向体积增大,降低了系统的可靠性。因此,永磁同步电机的无传感器控制逐渐成为重要的研究课题。工程设计中,永磁同步电机的无传感器矢量控制包括启动-低速控制和中高速控制两个部分。两种控制方法相辅相成,弥补了各自的不足,共同实现了永磁同步电机的全速控制。常用滑模观测器实现永磁同步电机的中高速无传感器矢量控制{文献《电机现代控制技术》,王成元、夏加宽等编著,机械工业出版社,P272-278},滑模观测器通过感应电动势实现转子位置和速度估计,由于启动和低速状态下的电机的感应电动势过小,导致滑模观测器无法应用于此区域。为弥补滑模观测器方法在低速区域中的不足,在这一区域,常用高频注入法替代滑模观测器方法,实现启动和低速下的永磁同步电机无传感器矢量控制{文献《电机现代控制技术》,王成元、夏加宽等编著,机械工业出版社,P279-295},然而,由于高频注入法向矢量控制系统弓IA 了高频信号,容易对矢量控制系统产生干扰。另外,电机从低速向中高速过渡的切换过程十分重要,如果不采用可靠的切换方法,极易引起两种控制方法的切换失败,影响矢量控制系统的可靠性。
技术实现思路
针对现有技术的缺陷或不足,本专利技术旨在提供一种,可在启动、低速至中高速的全速范围内,均能对永磁同步电机实现无传感器矢量控制,可靠性高且低速范围内不会引入高频干扰。为达成上述目的,本专利技术所采用的技术方案如下:一种永磁同步电机的无传感器矢量控制系统,包括:前置电流滤波器(101)、低速转子位置观测器(102)、低速转子速度观测器(103)、三相静止向两相静止坐标变换器(104-1)、滑模观测器(104-2)、微分器(104-3)、模式转换器(105)、三相静止向两相旋转坐标变换器(106)、PI速度控制器(107)、PI交轴电流控制器(108)、PI直轴电流控制器(109)、两相旋转向两相静止坐标变换器(110)、空间矢量脉宽控制器(111)、逆变器(112)、a相电流传感器(113)和b相电流传感器(114),该控制系统(100)通过逆变器(112)与被控电机(200)相连,其中: 所述模式转换器(105)输出的转子速度估计值仓与一电机转子速度给定值< 相比较的差值作为PI速度控制器(107)的输入,PI速度控制器(107)输出的交轴电流给定值和三相静止向两相旋转坐标变换器(106)输出的交轴电流反馈值&相比较的差值输入给PI交轴电流控制器(108),直轴电流给定值/: =0和三相静止向两相旋转坐标变换器(106)输出的直轴电流反馈值I相比较的差值输入给PI直轴电流控制器(109),PI直轴电流控制器(109)输出的直轴电 压给定值Ud和PI交轴电流控制器(108)输出的交轴电压给定值Uq共同输入两相旋转向两相静止坐标变换器(110),两相旋转向两相静止坐标变换器(110)输出的a轴电压给定值ua和P轴电压给定值U0共同输入空间矢量脉宽控制器(111),空间矢量脉宽控制器(111)的输出作为逆变器(112)的输入,逆变器(112)的输出作为驱动信号与永磁同步电机(200)三相定子绕组相连;所述永磁同步电机(200)的a相电流通过所述a相电流传感器(113)采集,所述a相电流传感器(113)采集到的a相电流信号分别与前置电流滤波器(101)、三相静止向两相静止坐标变换器(104-1)和三相静止向两相旋转坐标变换器(106 )的a相电流输入端相连;所述永磁同步电机(200 )的b相电流通过b相电流传感器(114 )采集,所述b相电流传感器(114)采集到的b相电流信号分别与三相静止向两相静止坐标变换器(104-1)及三相静止向两相旋转坐标变换器(106)的b相电流输入端相连;所述前置电流滤波器(101)的输出/I分别与低速转子位置观测器(102 )和低速转子速度观测器(103)的输入相连,所述低速转子位置观测器(102)的输出#?与模式转换器(105)的低速转子位置输入相连,所述低速转子速度观测器(103)的输出心厂°与模式转换器(105)的低速转子速度输入相连,所述三相静止向两相静止坐标变换器(104-1)的输出Ia和I”两相旋转向两相静止坐标变换器(110)输出的a轴电压给定值ua和P轴电压给定值U0共同送入滑模观测器(104-2),该滑模观测器(104-2)的输出分别与模式转换器(105)的滑模转子位置输入及微分器(104-3)的输入相连,该微分器(104-3)的输出与模式转换器(105)的滑模转子速度输入相连,该模式转换器(105)输出的转子角度估计值^分别作为三相静止向两相旋转坐标变换器(106)和两相旋转向两相静止坐标变换器(110)的角度输入;所述两相旋转向两相静止坐标变换器(110)根据转子角度估计值将两相旋转的dq轴电压转换为两相静止的a ^轴电压,所述空间矢量脉宽控制器(111)根据所述a ^轴电压产生逆变器(112)的控制信号,所述逆变器(112)根据该控制信号控制永磁同步电机(200)的三相定子电流通断。根据本专利技术的改进,还提出一种基于上述无传感器矢量控制系统的控制方法,包括启动-低速控制、中高速控制和过渡区域控制,其中:(I)启动-低速控制,利用所述前置电流滤波器(101)用于消除电流高频信号引起的抖震,其实现过程如下:a)所述前置电流滤波器(101)的传递函数如下:【权利要求】1.一种永磁同步电机的无传感器矢量控制系统,其特征在于,包括:前置电流滤波器(101)、低速转子位置观测器(102)、低速转子速度观测器(103)、三相静止向两相静止坐标变换器(104-1)、滑模观测器(104-2)、微分器(104-3)、模式转换器(105)、三相静止向两相旋转坐标变换器(106)、PI速度控制器(107)、PI交轴电流控制器(108)、PI直轴电流控制器(109)、两相旋转向两相静止坐标变换器(11本文档来自技高网
...

【技术保护点】
一种永磁同步电机的无传感器矢量控制系统,其特征在于,包括:前置电流滤波器(101)、低速转子位置观测器(102)、低速转子速度观测器(103)、三相静止向两相静止坐标变换器(104?1)、滑模观测器(104?2)、微分器(104?3)、模式转换器(105)、三相静止向两相旋转坐标变换器(106)、PI速度控制器(107)、PI交轴电流控制器(108)、PI直轴电流控制器(109)、两相旋转向两相静止坐标变换器(110)、空间矢量脉宽控制器(111)、逆变器(112)、a相电流传感器(113)和b相电流传感器(114),该控制系统(100)通过逆变器(112)与被控电机(200)相连,其中:所述模式转换器(105)输出的转子速度估计值与一电机转子速度给定值相比较的差值作为PI速度控制器(107)的输入,PI速度控制器(107)输出的交轴电流给定值和三相静止向两相旋转坐标变换器(106)输出的交轴电流反馈值相比较的差值输入给PI交轴电流控制器(108),直轴电流给定值和三相静止向两相旋转坐标变换器(106)输出的直轴电流反馈值相比较的差值输入给PI直轴电流控制器(109),PI直轴电流控制器(109)输出的直轴电压给定值ud和PI交轴电流控制器(108)输出的交轴电压给定值uq共同输入两相旋转向两相静止坐标变换器(110),两相旋转向两相静止坐标变换器(110)输出的α轴电压给定值uα和β轴电压给定值uβ共同输入空间矢量脉宽控制器(111),空间矢量脉宽控制器(111)的输出作为逆变器(112)的输入,逆变器(112)的输出作为驱动信号与永磁同步电机(200)三相定子绕组相连;所述永磁同步电机(200)的a相电流通过所述a相电流传感器(113)采集,所述a相电流传感器(113)采集到的a相电流信号分别与前置电流滤波器(101)、三相静止向两相静止坐标变换器(104?1)和三相静止向两相旋转坐标变换器(106)的a相电流输入端相连;所述永磁同步电机(200)的b相电流通过b相电流传感器(114)采集,所述b相电流传感器(114)采集到的b相电流信号分别与三相静止向两相静止坐标变换器(104?1)及三相静止向两相旋转坐标变换器(106)的b相电流输入端相连;所述前置电流滤波器(101)的输出分别与低速转子位置观测器(102)和低速转子速度观测器(103)的输入相连,所述低速转子位置观测器(102)的输出与模式转换器(105)的低速转子位置输入相连,所述低速转子速度观测器(103)的输出与模式转换器(105)的低速转子速度输入相连,所述三相静止向两相静止坐标变换器(104?1)的输出Iα和Iβ、两相旋转向两相静止坐标变换器(110)输出的α轴电压给定值uα和β轴电压给定值uβ共同送入滑模观测器(104?2),该滑模观测器(104?2)的输出分别与模式转换器(105)的滑模转子位置输入及微分器(104?3)的输入相连,该微分器(104?3)的输出与模式转换器(105)的滑模转子速度输入相连,该模式转换器(105)输出的转子角度估计值分别作为三相静止向两相旋转坐标变换器(106)和两相旋转向两相静止坐标变换器(110)的角度输入;所述两相旋转向两相静止坐标变换器(110)根据转子角度估计 值将两相旋转的dq轴电压转换为两相静止的αβ轴电压,所述空间矢量脉宽控制器(111)根据所述αβ轴电压产生逆变器(112)的控制信号,所述逆变器(112)根据该控制信号控制永磁同步电机(200)的三相定子电流通断。FDA0000403414070000011.jpg,FDA0000403414070000012.jpg,FDA0000403414070000013.jpg,FDA0000403414070000014.jpg,FDA0000403414070000015.jpg,FDA0000403414070000024.jpg,FDA0000403414070000025.jpg,FDA0000403414070000026.jpg,FDA0000403414070000021.jpg,FDA0000403414070000022.jpg,FDA0000403414070000023.jpg...

【技术特征摘要】

【专利技术属性】
技术研发人员:林鹤云陆婋泉
申请(专利权)人:东南大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1