基于三电平H桥级联的静止同步补偿器及电压源逆变模块制造技术

技术编号:9584396 阅读:97 留言:0更新日期:2014-01-16 12:30
本实用新型专利技术提供了一种电压源逆变模块,包括依次连接的旁路开关电路、三电平H桥、直流侧电容电压放电回路。本实用新型专利技术还提供相应的基于三电平H桥级联的单相链式静止同步补偿器、基于三电平H桥级联的静止同步补偿器。本实用新型专利技术克服了现有的级联STATCOM的不足,对于高压系统串联模块多的缺陷,提供了一种由三电平H桥模块级联的STATCOM,此拓扑结构的单个模块具有耐压等级高,体积小,输出电流谐波含量低等优点。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
【专利摘要】本技术提供了一种电压源逆变模块,包括依次连接的旁路开关电路、三电平H桥、直流侧电容电压放电回路。本技术还提供相应的基于三电平H桥级联的单相链式静止同步补偿器、基于三电平H桥级联的静止同步补偿器。本技术克服了现有的级联STATCOM的不足,对于高压系统串联模块多的缺陷,提供了一种由三电平H桥模块级联的STATCOM,此拓扑结构的单个模块具有耐压等级高,体积小,输出电流谐波含量低等优点。【专利说明】 基于三电平H桥级联的静止同步补偿器及电压源逆变模块
本技术涉及电力系统柔性交流输电(FACTS)
,特别涉及一种基于三电平H桥模块级联的静止同步无功功率补偿器。
技术介绍
近年来,节能减排、资源节约成了各国普遍关注的问题,电能作为应用最为广泛、最贴近工业生产与人民生活的能源,其生产、输送和使用的各个环节的节能、高效运行成为了人们关注的焦点。应用电力电子技术队电力系统主要参数进行调节与控制,来提高电力系统的可控性、有效性和可靠性的FACTS技术得到了广泛的应用与研究。基于电压源逆变器的静止同步补偿器(STATCOM, Static SynchronousCompensator),与传统的晶闸管控制的静止无功功率补偿装置SVC相比具有以下优点:(I)STATCOM调节速度快,补偿范围宽,抗电网波动能力强;(2)采用多电平和PWM技术后可大大减少补偿电流中的谐波含量,噪音小;(3)所用电容器和电抗器体积小,降低了设备体积和成本。目前,STATCOM的主电路主要包括三种结构,即多重化结构、多电平结构和链式结构。其中多重化结构以三相大功率电压源换流器为核心,电容器上的直流电压通过逆变产生相位差若干度的方波电压,经过多重化变压器的电磁耦合,在输出端产生三相阶梯波电压,以减小输出谐波。此方法中三相共用一个直流电压,无法进行分相控制,并且变压器损耗大、成本高、占地面积大。多电平结构是采用钳位二极管或电容构成的多电平结构,次结构动态性能好,输出电流谐波少,结构紧凑。但是,当电平超过五后,系统控制复杂度大大升高,而且难以实现电容电压平衡控制。链式结构STATCOM每一相都是一个独立的链,由N个结构完全相同的逆变单元组成。此结构有输出谐波电流小,占地面积少,响应时间短,无功补偿范围宽,易维护,易扩展,成本低等优点,已经成为国内外专家研究的焦点,并逐步应用到高压输电网中。链式STATCOM的核心部分是模块化的电压源逆变器,传统的链式结构模块由两电平H桥模块组成。此方式结构简单、易实现,但是在电压等级高的情况下两电平H桥串连模块多,这既增加了装置的体积,也增加了控制系统的难度。针对这一缺点本技术提出了一种三电平H桥级联的STATC0M,设备在相同电压等级和开关管的情况下,串联模块少、体积小、降低控制系统复杂度、增加了设备可靠性。
技术实现思路
本技术的目的是克服现有的级联STATCOM的不足,对于高压系统串联模块多的缺陷,提供一种由三电平H桥模块级联的STATC0M,此拓扑结构的单个模块耐压等级高,体积小,输出电流谐波少。根据本技术的一个方面,提供一种电压源逆变模块,包括依次连接的旁路开关电路、三电平H桥、直流侧电容电压放电回路,其中:所述旁路开关电路用于实现保护功能,所述旁路开关电路并联在所述三电平H桥的交流输出侧,所述三电平H桥用于完成电压源逆变模块的直流到交流的逆变功能,所述三电平H桥包括两个二极管钳位的三电平桥臂、以及由两个直流侧储能电容器C1、C2构成的电容器组,两个二极管钳位的三电平桥臂和电容器组并联连接,两个三电平桥臂的阳极均与电容器组的正极相连,两个三电平桥臂的阴极均与电容器组的负极相连,两个三电平桥臂的中性点均与电容器组的中性点相连,两个三电平桥臂的中点构成交流输出点;所述直流侧电容电压放电回路用于完成直流侧储能电容器电压过高、直流侧储能电容器电压不均衡、电压源逆变模块紧急或正常退出时的直流侧储能电容器放电,所述直流侧电容电压放电回路包括全控型器件T9、T10和放电电阻Rp R2,全控型器件T9、放电电阻R1串联后并联在直流侧储能电容器C1两端,全控型器件Tltl、放电电阻R2串联后并联在直流侧储能电容器C2两端。 优选地,所述三电平H桥包括由全控型器件构成的桥臂。优选地,所述全控型器件为绝缘栅双极晶体管、门极换流晶闸管、门极可关断晶闸管、电力晶体管、或电力场效应晶体管。根据本技术的另一个方面,还提供一种基于三电平H桥级联的单相链式静止同步补偿器,包括串联的多个权利要求1至3中任一项所述的电压源逆变模块。优选地,当电压源逆变模块正常工作时所述旁路开关电路为开路状态,所述三电平H桥的交流侧电流在所述三电平H桥中流过;当电压源逆变模块内部发生故障时,所述旁路开关电路导通,所述三电平H桥的交流侧电流在旁路开关电路中流过,实现故障电压源逆变模块的在线切除。根据本技术的又一个方面,还提供一种基于三电平H桥级联的静止同步补偿器,包括多个上述的单相链式静止同步补偿器和多个连接电抗器,其中,所述连接电抗器用于滤除换流链产生的高次谐波电流,所述连接电抗器置于每一单相链式静止同步补偿器的两端,多个单相链式静止同步补偿器之间三角形连接,所述三角形连接具体为:三个由电抗器和单相链式静止同步补偿器组成的电路依次首尾链接。优选地,还包括冷却系统、避雷器、预充电回路,其中,所述冷却系统用于静止同步补偿器中换流链和连接电抗器的冷却;所述避雷器与单相链式静止同步补偿器并联连接,所述避雷器用于实现单相链式静止同步补偿器的过电压保护;所述预充电回路与单相链式静止同步补偿器串联,所述预充电回路用于实现静止同步补偿器上电时对直流侧储能电容器进行预充电。根据本技术的再一个方面,还提供一种基于三电平H桥级联的静止同步补偿器,包括多个上述的单相链式静止同步补偿器和多个连接电抗器,其中,所述连接电抗器用于滤除换流链产生的高次谐波电流,所述连接电抗器置于所述单相链式静止同步补偿器与电网侧连接的一端,多个单相链式静止同步补偿器之间星形连接,所述星形连接具体为:三个单相链式静止同步补偿器非连接所述连接电抗器的一端端接在一个公共节点上。优选地,还包括冷却系统、避雷器、预充电回路,其中,所述冷却系统用于静止同步补偿器中换流链和连接电抗器的冷却;所述避雷器与单相链式静止同步补偿器并联连接,所述避雷器用于实现单相链式静止同步补偿器的过电压保护;所述预充电回路与单相链式静止同步补偿器串联,所述预充电回路用于实现静止同步补偿器上电时对直流侧储能电容器进行预充电。更为具体地,为了达到以上技术目的,STATCOM主电路的每一相都是由多个相同结构的链式单元串联而成,其中包括冷却系统、连接电抗器、避雷器、预充电回路和电压源逆变功率模块:所述连接电抗器的作用是滤除换流链产生的高次谐波电流,实现STATCOM与电网系统之间的能量交换。当STATCOM为三角形连接时,连接电抗器置于每一相的电压源逆变模块链的两端;当其为星形连接时,连接电抗器置于电压源逆变模块链与电网侧连接的一端; 所述避雷器与电压源逆变模块链并联使用,用于实现电压源逆变模块链的过电压保护;所述预充电回路与电压源逆变模块链串联,用于实现主回路上电本文档来自技高网
...

【技术保护点】
一种电压源逆变模块,其特征在于,包括依次连接的旁路开关电路、三电平H桥、直流侧电容电压放电回路,其中:所述旁路开关电路用于实现保护功能,所述旁路开关电路并联在所述三电平H桥的交流输出侧;所述三电平H桥用于完成电压源逆变模块的直流到交流的逆变功能,所述三电平H桥包括两个二极管钳位的三电平桥臂、以及由两个直流侧储能电容器C1、C2构成的电容器组,两个二极管钳位的三电平桥臂和电容器组并联连接,两个三电平桥臂的阳极均与电容器组的正极相连,两个三电平桥臂的阴极均与电容器组的负极相连,两个三电平桥臂的中性点均与电容器组的中性点相连,两个三电平桥臂的中点构成交流输出点;所述直流侧电容电压放电回路用于完成直流侧储能电容器电压过高、直流侧储能电容器电压不均衡、电压源逆变模块紧急或正常退出时的直流侧储能电容器放电,所述直流侧电容电压放电回路包括全控型器件T9、T10和放电电阻R1、R2,全控型器件T9、放电电阻R1串联后并联在直流侧储能电容器C1两端,全控型器件T10、放电电阻R2串联后并联在直流侧储能电容器C2两端。

【技术特征摘要】

【专利技术属性】
技术研发人员:姜建国刘贺乔树通徐亚军郭力峰
申请(专利权)人:上海交通大学
类型:实用新型
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1