一种改进的多变量公钥签名方案,涉及数字签名领域。本发明专利技术对Huang等人在文章“An?Improved?MFE?Scheme?Resistant?against?SOLE?Attacks”中提出的方案,利用增加中心映射次数的方法,对该方案中的中心映射进行了重新设计,并相应修改了签名过程,使得改进后的方案能够抵抗二阶线性化方程攻击,秩攻击和基攻击,从而提高了方案的性能与安全性。
【技术实现步骤摘要】
一种改进的多变量公钥签名方案
本专利技术涉及数字签名领域,具体来讲是一种改进的多变量公钥签名方案。
技术介绍
近年来,公钥密码体制得到了迅猛的发展,涌现了RSA等一批基于大整数分解和ECC等基于离散对数问题的公钥密码体制。在文献“Polynomial-timeAlgorithmsforPrimeFactorizationandDiscreteLogarithmsonaQuantumComputer”提出了一种攻击方法,利用量子计算机在多项式时间内解决整数分解和离散对数问题。这给密码学研究人员提出了一个新问题:如何构造新的公钥密码体制,使其能抵御未来基于量子计算机的攻击方法。多变量公钥密码体制被认为是能抵御未来基于量子计算机攻击的几种公钥密码体制之一,其安全性是基于有限域上求解多变量多项式方程组(MQ)困难性问题。该体制具有较高的效率和安全性,且易于硬件实现,因此被认作量子计算机时代一种安全的密码体制和数字签名备选方案。GarayM和JohnsonD在文章Computersandintractability-aguidetothetheoryofNP-Completeness提出了一种Medium-Field型(MFE)的多变量公钥加密方案。与其他的多变量公钥密码加密方案相比,MFE加密方案的优点如下:(1)MFE方案从“小域”到“大域”的扩张次数非常少,使公钥长度和计算复杂度大大降低。这也是MediumField的由来。(2)MFE方案的中心映射采用类似Tame映射的形式,使密钥的生成更高效。在PKC2007会议上,Ding等人利用MFE中心映射对应的矩阵形式所具有的特殊代数结构,推导出一组二阶线性化方程,使得在唯密文攻击下,可通过解方程攻破该方案。随后出现了诸多对MFE的改进方案,但这些方案大都被攻破了。Huang等人在文章“AnImprovedMFESchemeResistantagainstSOLEAttacks”中提出了一种MFE的改进方案,但该方案并不能抵抗一阶线性化方程攻击及二阶线性化方程的攻击,该改进方案并没有增强MFE体制的安全性。
技术实现思路
针对现有技术中存在的缺陷,本专利技术的目的在于提供一种改进的多变量公钥签名方案,该改进的多变量公钥签名方案能够抵抗二阶线性化方程攻击、秩攻击和基攻击。为达到以上目的,本专利技术采取的技术方案是一种改进的多变量公钥密码签名方案,包括中心映射的改进与签名两个步骤。在上述方案的基础上,所述中心映射的改进步骤包括:101.重新设计中心映射的过程:1011.首先增添4个新变量X′1,X′2,X′3,X′4,在X1,…,X12中随机选4个不同的变量然后将它们写成以下形式的组合:其中参数δ1,…,δ4∈L,再将这4个二次项的线性组合添加为中心映射的外部扰动;1012.设K是特征为2的有限域,L是其r次扩域,π:L→Kr,π1:L16→K16r,π2:L11→K11r是K-线性同构,令:其中αi,βi,γi,λi,δj∈L,1≤i≤11,1≤j≤4;1013.重新设计中心映射L16→L11,形式如下:设:从而有:102.中心映射的求逆过程:1021.随机指定:的值,使得它们都是非零值,计算W1,…,W11,如果等于0,则返回到步骤1021;1022.随机选择a,a∈L/{0},令det(M2)=a,计算det(M1)、det(M3)的值,1023.在域K3r上求解下面的三角映射:Y1=X1+det(M2)+Q1+W1Y2=X2+det(M3)+Q2+W2Y3=X3+det(M1)+Q3+W3,恢复出X1,X2和X3,如果X1=0,则返回到步骤1022;1024.如果X1≠0,从det(M1)=X1X4+X2X3中求出X4,然后,求解中心映射方程组中其余的方程获得X5,…,X12;1025.通过已知的和计算出X′1,X′2,X′3,X′4。在上述方案的基础上,所述签名包括以下步骤:201.公私钥的选取:私钥由可逆仿射变换S,T,系数αi,βi,γi,λi,δj(1≤i≤11,1≤j≤4)以及i1,…,i4组成,公钥由11r个多变量二次多项式f1(u1,…,u16r),…,f11r(u1,…,u16r)组成,其中:202.签名过程:设H是哈希函数,给定消息M,首先计算消息M的哈希值H(M)=(v1,…,v11r),然后通过执行以下步骤对消息签名:2021.首先计算2022.然后计算2023.最后计算(u1,…,u16r)=S-1οπ1(X1,…,X12,X′1,X′2,X′3,X′4),其中(u1,…,u16r)就是消息M的签名;203.验证过程:首先,计算消息M的哈希值H(M)=(v1,…,v11r);然后将签名(u1,…,u16r)的值代入到公钥多项式:得到一组输出(v′1,…,v′11r),如果(v′1,…,v′11r)等于(v1,…,v11r),则验证了签名是有效的,否则签名无效。本专利技术的有益效果在于:本专利技术对Huang等人在文章“AnImprovedMFESchemeResistantagainstSOLEAttacks”中提出的方案,利用增加中心映射次数的方法,对该方案中的中心映射进行了重新设计,并相应修改了签名过程,使得改进后的方案能够抵抗二阶线性化方程攻击,秩攻击和基攻击。具体实施方式本专利技术所应用的数学理论及技术术语说明如下:公钥加密:由对应的一对唯一性密钥(即公开密钥和私有密钥)组成的加密方法。它解决了密钥的发布和管理问题,是目前商业密码的核心。在公钥加密体制中,没有公开的是明文,公开的是密文。多变量公钥加密:多变量公钥密码体制被认为是能抵御未来基于量子计算机攻击的几种公钥密码体制之一,其安全性是基于有限域上求解多变量多项式方程组为NP-C问题。该体制具有较高的效率和安全性,且易于硬件实现,因此被认作量子计算机时代一种安全的密码体制和数字签名备选方案。秩攻击:秩攻击是将二次多变量公钥多项式的系数写成矩阵形式,结合中心映射的构造以及矩阵的秩(奇异性)进行密码分析。秩攻击可分为三种类型,分别是低秩攻击,高秩攻击和分离Oil变量和Vinegar变量攻击。基算法:求解一族多变量方程组的经典算法是构造基利用Buchberger算法来解决。该算法是将单项式按一定次序进行排序,然后根据两个方程的适当多项式系数合并来约去最高位的单项式,重复这一过程进行消元,直到最后一个变量。然而不断地进行该消项过程,剩余单项式的次数也将急速增长。哈希函数:Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入,通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。数字签名:数字签名(又称公钥数字签名、电子签章)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法。一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证。本专利技术对Huang等人在文章“AnImprovedMFESchemeResistantag本文档来自技高网...
【技术保护点】
一种改进的多变量公钥密码签名方案,其特征在于包括中心映射的改进与签名两个步骤。
【技术特征摘要】
1.一种改进的多变量公钥密码签名方案,其特征在于包括中心映射的改进与签名两个步骤;所述中心映射的改进步骤包括:101.重新设计中心映射的过程;1011.首先增添4个新变量X′1,X′2,X′3,X′4,在X1,…,X12中随机选4个不同的变量然后将它们写成以下形式的组合:其中参数δ1,…,δ4∈L,再将这4个二次项的线性组合添加为中心映射的外部扰动;1012.设K是特征为2的有限域,L是其r次扩域,π:L→Kr,π1:L16→K16r,π2:L11→K11r是K-线性同构,令:其中αi,βi,γi,λi,δj∈L,1≤i≤11,1≤j≤4;1013.重新设计中心映射L16→L11,形式如下:设:
【专利技术属性】
技术研发人员:杨雄瑞,王保仓,高丽伟,郑晓晨,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。