【技术实现步骤摘要】
【技术保护点】
一种基于遗传神经网络模型的正常蓄水位智能优选方法,其特征在于包括如下步骤:1)确定水库正常蓄水位的高低限值,利用GIS技术进行淹没分析,为初选正常蓄水位方案提出具有制约性的淹没对象的控制水位高程、范围和数量;2)提出水库蓄水位预值高程,对面积和体积指标进行获取,连同专家分析计算及定性分析指标部分,形成一个拟选方案,重复步骤2),形成比选方案集合;3)选择指标评价因子,选出显著性差异指标参与各模型的计算;4)根据所需样本数量构成网络学习样本,训练完成的网络通过四个测试样本来验证结果,对训练样本及测试样本进行归一化处理;5)确定BP网络学习结构和初始化遗传算法种群,优选模型中的BP神经网络采用三层神经元结构,种群个数根据Kolmogorov定理得出,群规模经多次试验得出最佳个数,对应每个子群,以随机的方式在[0,1]区间选取较小值作为BP网络的初始权值;6)运用遗传算法优化神经网络权值和阈值;7)BP神经网络权值细调,利用建立完成的模型对待选方案进行评价。
【技术特征摘要】
【专利技术属性】
技术研发人员:刘仁义,张丰,杜震洪,郜美娜,郑晔,郑少楠,
申请(专利权)人:浙江大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。