一种利用光伏发电的窄通道双层通风外墙,属于太阳能发电建筑一体化技术领域。本发明专利技术包括实体墙(6)与通过化学锚栓(3)连接固定在实体墙(6)外侧的太阳能电池板(1),所述的实体墙(6)与太阳能电池板(1)中间预留了空腔(5);空腔(5)上方设置了出风口,出风口处安装有出风阀(7),空腔(5)下方设置了进风口,进风口处安装有进风阀(8)。本发明专利技术针对太阳能电池板与实体外墙相结合的BIPV方式,在太阳能电池板和实体外墙间预留空腔,通过直流风机强制通风带走太阳能电池板发电过程中的产热量,减少对建筑物外墙的热辐射效应。
【技术实现步骤摘要】
本专利技术属于太阳能发电建筑一体化(简称BIPV)
,特别涉及一种利用强制通风降低太阳能光伏组件背板温度的双层通风式外墙。
技术介绍
:太阳能资源丰富,太阳能利用是缓解能源紧张的一种有效途径,其中太阳能发电建筑一体化(简称BIPV)是当前太阳能利用的主流趋势。太阳能电池板和建筑有效结合成一体,不需要额外的空间,产生的能源就地利用,减少了输送能耗。BIPV的结合方式有多种,光电屋面、光电外墙、光电幕墙、光电遮阳构件等。然而,太阳能电池板发电过程中产生的热效应,不仅降了自身的发电效率,并且使建筑物本身受到强烈的热辐射,不得不采用空调降温,增加了建筑的运行能耗。已有相关研究 降低BIPV太阳能热效应的方法,多数为太阳能电池板自身结构增加冷却部件,或者太阳能发电系统回收热量,控制太阳能电池板的温度。这些研究没有针对太阳能电池与建筑相结合的特点,没有充分利用建筑物作为载体辅助降温。一些幕墙厂家针对光电幕墙做了特殊通风降温设计,并申报获取了相应专利。这些专利的原理大致相同,将密闭的光电幕墙改成开敞式幕墙。光电幕墙通常情况下设计成双层结构,外层为太阳能电池板组合而成的光电幕墙,内层(靠近建筑物室内)为透光的玻璃或者其他材料,双层中间预留了空腔,上下增加通风口,利用“烟囱效应”或者强制通风,带走外层光电幕墙的多余热量,减少光电幕墙对内层玻璃的热辐射影响。倘若采用强制通风,可利用部分光电幕墙发电量,给通风扇提供电力供应。上述专利充分利用了 BIPV的特点,改善电池板和建筑结合部件和结构组成,值得借鉴。不足之处,为了产生“烟園效应”,光电幕墙空腔的宽度和高度都必须有严格要求,才能顺利的将热量排走。而强制通风方式,风速的控制也有要求,这些专利均没有涉及。这些专利仅实现了通风的功能,但无法保障通风的效果。很多BIPV工程更倾向采用太阳能电池板与实体外墙相结合的方式,将太阳能电池板安装在建筑的南立面或者东西立面窗间墙的位置。这种BIPV方式,避免了光电幕墙和室内采光之间的矛盾,更容易被建筑师或业主接受。太阳能电池板在夏季日光强烈的情况下温度上升至70°C 10(TC,对内侧为实体外墙也有显著地热辐射效果。为了解决此问题,本专利技术提供一种利用光伏发电的窄通道双层通风外墙结构。
技术实现思路
本专利技术设计了一种利用强制通风方式冷却太阳能电池板的双层通风外墙,技术方案是:建筑朝阳面(多为东立面、南立面和西立面)窗间墙位置安装太阳能光伏电池板,形成双层结构,外层为单块或者多块拼接的太阳能电池板,内层为建筑窗间墙。一种利用光伏发电的窄通道双层通风外墙,包括实体墙6与通过化学锚栓3连接固定在实体墙6外侧的太阳能电池板1,所述的实体墙6与太阳能电池板I中间预留了空腔5 ;空腔5上方设置了出风口,出风口处安装有出风阀7,空腔5下方设置了进风口,进风口处安装有进风阀8。空腔内5安装了温度传感器4,温度传感器4的控制端连接到控制器9将监测的温度发送给控制器9。控制器9的输出端连接控制出风阀7和进风阀8并控制出风阀7和进风阀8的开启和关闭。空腔5的出风口内处安装了直流风机10,控制器9的控制端连接直流风机10控制直流风机10的启停。部分太阳能电池板I为控制器9和直流风机10供电。太阳能电池板I为多晶硅、单晶硅、薄膜非晶硅或者多元化合物型电池芯片串联组成的太阳能电池板。所述的空腔5的宽度为50mnTl00mm。化学锚栓3设置于混凝土承重构件中且避开钢筋位置,化学锚栓有效锚固深度不小于8d,d为化学锚栓的直径。倘若非采暖季测量温度超过30 V,控制器开启进风口和出风口的风阀,开启直流风机,在风压的驱动力下,冷空气从进风口进入空腔,热空气从出风口排出。采暖季节进风口和出风口风阀全部关闭,停止运行直流风机,空腔内形成一个温室,增强建筑物本身的保温性能本专利技术针对太阳能电池板与实体外墙相结合的BIPV方式,在太阳能电池板和实体外墙间预留空腔,通过直流风机强制通风带走太阳能电池板发电过程中的产热量,减少对建筑物外墙的热辐 射效应。本专利技术的有益效果(I)降低了太阳能电池板工作温度,提高了发电效率;(2)减少了建筑物外墙的辐射得热量,减少了建筑空调运行能耗;(3)通过风机进行强制通风,通过控制风速保证冷却效果;(4)采用直流风机,由太阳能电池板供电,减少了外部电源的输入,结构简单;(5)降低了建筑物外墙的表面温度,避免对室内的热舒适效果的负面影响,改善室内的生活质量和提高了工作效率。附图说明图1为窄通道双层通风外墙正视图;图2为窄通道双层通风外墙剖面图;图3为窄通道双层通风外墙a-a侧视图;图4为窄通道双层通风外墙b_b侧视图; 图5为窄通道双层通风外墙的通风示意图。图中:1、太阳能电池板,2、角钢,3、化学锚栓,4、温度传感器,5、空腔,6、实体墙,7、出风阀,8、进风阀,9、控制器,10、直流风机。具体实施例方式下面结合附图和具体实施方式对于本专利技术作进一步的说明。如图1,太阳能电池板I拼接成方阵,安装在建筑朝阳立面,通常为南立面、西立面或东立面。如图2,实体墙6由混凝土结构6-1外侧黏贴了 A级防火保温材料6_2组成的。如图3,太阳能电池板I通过角钢2固定在混凝土结构6-1内。如图4,太阳能电池板I与外墙混凝土结构6-1通过化学锚栓3连接固定,化学锚栓3设置于混凝土承重构件中且避开钢筋位置,化学锚栓有效锚固深度不小于8d (八倍直径)。如图4,外墙6和太阳能电池板I之间留有空腔5,空腔5的尺寸控制在5(Tl00mm,从而减少空气流量的阻力,保证足够的空气流量。空腔5下方设计了进风口和风阀8,空腔上方设计了出风口风阀7。空腔上方设计了直流风机10,部分太阳能电池板I为直流风机10供电。空腔内安装温度传感器4,通过弱电RVVP线与控制器9相连。其中控制器9为示意位置。控制器9根据温度传感器 4监测的温度,控制进风口风阀8和出风口风阀7的开启或关闭。控制器9控制直流风机10的开启或关闭。建筑内不需要供暖的情况下,根据传感器4监测的温度值,倘若温度超过30°C,控制器9打开进风口风阀8和出风口风阀7,开启直流风机10,在电机风压的驱动下冷空气进入空腔5,在空腔5内形成良好的强制通风状态,带走热量后,从出风口流出。由于空腔5宽度不低于50mm,通风量的方向和流量均能够得到保障。倘若室内需要供暖,控制器9关闭进风口风阀8和出风口风阀7,直流风机10停止运行,空腔5内形成温室。在夏热冬暖地区等常年不需要供暖的情况下,外墙6-2的材料为面砖、涂料或者其他装饰材料。根据传感器4监测的温度值,倘若温度超过30°C,控制器9打开进风口风阀8和出风口风阀7,开启直流风机10,在电机风压的驱动下冷空气进入空腔5,在空腔5内形成良好的强制通风状态,带走热量后,从出风口流出。由于空腔5宽度不低于50_,通风量的方向和流量均能够得到保障。权利要求1.一种利用光伏发电的窄通道双层通风外墙,包括实体墙(6)与通过化学锚栓(3)连接固定在实体墙(6)外侧的太阳能电池板(1),其特征在于:所述的实体墙(6)与太阳能电池板(I)中间预留了空腔(5);空腔(5)上方设置了出风口,出风口处安装有出风阀(7),空腔(5)下方设置了进风口,进风口处安装有进风阀(8);所述的空腔(5)的宽度为50mn本文档来自技高网...
【技术保护点】
一种利用光伏发电的窄通道双层通风外墙,包括实体墙(6)与通过化学锚栓(3)连接固定在实体墙(6)外侧的太阳能电池板(1),其特征在于:所述的实体墙(6)与太阳能电池板(1)中间预留了空腔(5);空腔(5)上方设置了出风口,出风口处安装有出风阀(7),空腔(5)下方设置了进风口,进风口处安装有进风阀(8);所述的空腔(5)的宽度为50mm~100mm。
【技术特征摘要】
【专利技术属性】
技术研发人员:薛志峰,张永宁,
申请(专利权)人:北京唯绿建筑节能科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。