本发明专利技术属生物工程酶制剂技术领域,涉及建立一种野生型枯草芽孢杆菌Bacillus?subtilis6-7发酵液分离纯化耐高温β-淀粉酶的方法。该菌已保藏于中国典型培养物保藏中心,保藏编号为:CTCC?M2009200。其特征在于采用野生型菌株B.subtilis6-7,以木薯粉、豆粕粉为碳氮源,获得的发酵液冷冻离心、硫酸铵沉淀、透析除盐、HiTrap?Qff离子柱交换、超滤离心管超滤除盐、monoQ5/50GL离子柱交换、Sephadex?G-75分离。得到的β-淀粉酶回收率为18.66%,纯化倍数为4.83,酶活达245395U/mg。对分离纯化的纯β-淀粉酶进行酶学性质研究,其耐热性好,pH5-8条件下稳定,质谱鉴定为β-淀粉酶。所得的产品纯度高,无色,可以达到食品级β-淀粉酶标准的要求。本发明专利技术建立的β-淀粉酶分离纯化工艺简单,便于操作,回收率高,酶活达24万单位/毫克。
【技术实现步骤摘要】
本专利技术涉及一种野生型枯草芽孢杆菌Bacillus subtilis6_7耐高温β -淀粉酶生产工艺,具体地涉及一种发酵液高效地分离纯化高酶活力β -淀粉酶的方法,属于发酵及酶工程领域。
技术介绍
β -淀粉酶(I, 4_ a-D-glucan maltohydrolase,EC3.2.1.2),是外切型糖化酶,作用于淀粉或糖原时,从α-1,4糖苷键的非还原性末端依次切下麦芽糖单位,水解产物有麦芽糖、麦芽三糖、极限糊精及少量的葡萄糖。麦芽糖同时发生瓦尔登转位反应(Waldeninversion),由α -型变为β-型,故称β-淀粉酶。理论上β _淀粉酶能将所有的直链淀粉转变为麦芽糖而将大约60%的支链淀粉转变为麦芽糖剩下的转变为糊精。β -淀粉酶广泛存在于大麦、小麦、燕麦、大豆、甘薯等植物中,及芽孢杆菌属(Bacillus)、耐热梭状芽孢杆菌属(Clostridium)及霉菌等微生物中。β _淀粉酶主要用于食品工业,如高麦芽糖浆、超高麦芽糖浆、麦芽糖醇的生产。将淀粉水解为麦芽糖,麦芽糖可作为甜味剂、品质改良剂、 防腐剂、稳定剂、麦芽糖醇的前体及糖尿病治疗的静脉注射剂。β_淀粉酶还可用于啤酒行业,是麦芽最为理想的取代品。适量β_淀粉酶作用于不同玉米淀粉,可以增加抗性淀粉含量,如HylonV玉米淀粉经β -淀粉酶水解4小时后抗性淀粉RS含量高达70.7%。目前国内淀粉酶主要从植物中直接提取,如大豆、大麦、小麦、甘薯,属于天然产品,安全,但仍存在许多不足。先将植物原料进行清洗、磨碎或碾碎,再进行浆渣分离,用水或缓冲液进行提取,操作复杂、成本高。这种从植物中直接提取纯淀粉酶的方法得率低,酶的产量低,酶活力低,费时费力,而且含有一些其他可溶性成分,品质粗糙。并且植物来源的β -淀粉酶受季节影响,来源有限,不能实现工业大规模连续生产,难以实现持续化的商业利润。且大麦、大豆等价格持续高涨,其成本愈来愈大,满足不了对淀粉酶的需求。植物来源的β_淀粉酶耐热性比微生物来源的差,所以开发微生物来源的β_淀粉酶分离纯化方法非常重要。微生物深层发酵生产,可以实现大规模工业化自动化生产。随着人们生活水平的提高,食品行业和啤酒行业生产的迅速发展,开发生产高质量耐高温淀粉酶是当前研究工作的重点。针对上述植物来源生产淀粉酶存在成本高、产品杂质含量高、耐热性差等问题,本专利技术提供一种野生型枯草芽孢杆菌Bacillussubtilis6-7发酵液高效地分离纯化耐高温β-淀粉酶的方法。同时,本专利技术利用来源广泛的木薯粉、豆柏粉作为培养基成分发酵生产β -淀粉酶,显著降低了生产成本,为工业化生产奠定基础。
技术实现思路
本专利技术所要解决的技术是通过一系列分离纯化手段的实施,提供一种从B.subtilis6-7发酵液分离纯化耐高温β -淀粉酶的方法,该菌株在申请人此前的专利技术申请中(相关专利申请号:201010167019.7)已经公开了,并且此前已经提交了保藏证明和存活证明。该方法能够得到电泳级纯度的β_淀粉酶。并且纯酶可以用于酶学性质的研究,能够用于进一步的质谱鉴定分析及其他理化性质研究。为解决上述技术问题,本专利技术采用如下技术方案:以木薯粉、豆柏粉为培养基原料,配制培养基,利用优化的产酶条件进行摇瓶发酵培养。分离纯化工艺特征是:(I)发酵液经4°C冷冻离心分离,收集上清液,即为粗酶液;(2)硫酸铵沉淀:在粗酶液中添加硫酸铵至饱和度为30%,4°C静置4h,冷冻离心,去除沉淀,收集上清液;继续添加 硫酸铵至饱和度为60%,4°C静置4h,冷冻离心,去除上清液,收集沉淀,用pH8.0、20mmol/L的Na2HPO4-NaH2PO4缓冲液复溶;(3)透析除盐:在同样的pH8.0、20mmol/L的Na2HPO4-NaH2PO4缓冲液进行透析,用相对分子截留量为IOKDa的透析袋;(4) HiTrap Q Fast Flow:将透析样品上样到 HiTrap Q Fast Flow 柱阴离子交换层析积累浓缩,A 液为 pH8.0、20mmoI/LNa2HPO4-NaH2PO4 缓冲液,B 液为 pH8.0、20mmol/LNa2HPO4-NaH2PO4/lmol/L NaCl缓冲液,用O lmol/L的NaCl进行线性梯度洗脱,在B液为20% 30%时,目的蛋白淀粉酶洗脱下来(如附图1);(5)超滤除盐:使用超滤离心管在冷冻低温低速下离心超滤除盐,4°C、3800r/min离心;(6)MonoQ5/50GL:将保留液进一步通过高效率的MonoQ5/50GL柱离子交换分离(如附图2);(7)凝胶分子筛分离:对收集到的洗出液进一步的凝胶分子筛S^hadex G_75柱分离,去除小的杂蛋白。将纯化的酶液进行SDS-PAGE电泳分析纯度(如附图3)、酶学性质研究及基质辅助激光解析飞行时间质谱鉴定分析。所述的枯草芽孢杆菌耐高温β -淀粉酶分离纯化方法,所述的优化培养获得高产β-淀粉酶发酵液包括:(I)本专利技术所用的菌种为枯草芽孢杆菌B.subtilis6-7,种子培养基为LB培养基:I %胰蛋白胨、0.5%酵母提取物、I % NaCl。(2)将甘油冻管保藏的菌株在10mL/50mL的LB培养基中活化培养12h,再转接至新鲜的50mL/250mL的摇瓶LB培养基中培养12h作为二级种子。(3)优化培养基:2%木薯粉、4%豆柏粉、0.1%磷酸氢二铵、0.00139%硫酸亚铁、0.6%柠檬酸钠、0.4%磷酸二氢钾、0.0005%硫酸锌、0.0123%硫酸镁、0.0111 %氯化钙,pH7.00 500mL摇瓶装液量为250mL培养基,121°C灭菌20min。(4)将二级种子按接种量4%接种于发酵优化培养基中。转速160r/min、培养温度37 °C摇瓶培养60h。所述的枯草芽孢杆菌耐高温β -淀粉酶分离纯化获得的纯β -淀粉酶进行酶学性质研究包括:(I)最适反应温度及温度稳定性:在分别在30、35、40、45、50、55、60、65、70、75、80°C测定淀粉酶活力,确定最适反应温度;在50、55、60、65、70、751:不同温度下处理酶液不同时间,测定残留酶活力(如附图4)。(2)最适反应pH及pH稳定性:将酶液于pH3.0、4.0、5.0、6.0、7.0、8.0柠檬酸-磷酸氢二钠缓冲液中测定β -淀粉酶的活力,确定最适反应PH ;在pH3.0,4.0,5.0,6.0,7.0、8.0下处理酶液不同时间,测定残留酶活力(如附图5)。(3)金属离子及EDTA对酶活的影响:在酶反应体系中分别加入lmmol/L的Na+、K+、Ca2+、Mg2+、Fe2+、Mn2+、Ni2+、Cu2+等8种金属离子和EDTA。并设置不加金属离子空白组,然后测定各组的酶活(如附图6)。通过本专利技术,成功分离纯化到电泳纯的淀粉酶,建立了一种野生型枯草芽孢杆菌B.subtilis6-7发酵液高效地分离纯化β -淀粉酶的方法,回收率高达18.66%,纯化倍数为4.83,酶活达245395U/mg。附图说明附图1是HiTrap Q Fast Flow(强阴离子交换树脂)离子交换层析谱图,峰A为β -淀粉酶附图2是monoQ5/50GL (强阴离子交换树脂)层析谱图,峰A为β -淀粉酶附图3是本文档来自技高网...
【技术保护点】
一种枯草芽孢杆菌耐高温β?淀粉酶分离纯化的方法,所述的高温β?淀粉酶来自:高产β?淀粉酶的枯草芽孢杆菌6?7,已保藏于中国典型培养物保藏中心,保藏编号为:CTCC?M2009200。
【技术特征摘要】
【专利技术属性】
技术研发人员:饶志明,邹艳玲,徐美娟,
申请(专利权)人:江南大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。