本发明专利技术是感应励磁式混合励磁无刷同步电机,其结构包括定子和转子,其中定子包括定子铁心、电枢定子绕组和定子励磁绕组:其中电枢绕组和定子励磁绕组安放于定子槽中;转子包括转子铁心、永磁体、多个转子励磁绕组,整流二极管和转轴,其中多个转子励磁绕组彼此独立,分别通过二极管短接;永磁体安放于转子,其个数及排列方式可根据励磁要求确定为多种形式。当定子励磁绕组通入直流电,在气隙建立恒定的磁场;当转轴以同步速运转时,在转子绕组上感应出脉振的励磁电流,改变气隙磁场的大小,通过改变定子励磁绕组中电流的大小,即控制电机的输出电压。优点:无电刷滑环,无需励磁机,结构简单,实现了转子励磁混合励磁电机的无刷励磁。
【技术实现步骤摘要】
本专利技术涉及的是一种感应励磁式混合励磁无刷同步电机,属于无刷励磁同步电机的领域。
技术介绍
感应励磁电励磁同步电机最早由日本学者于上世纪60年代提出。该种电机主励磁绕组安放于转子上。为了实现了转子励磁电机的无刷化励磁,在定子上再加上一组定子励磁绕组。当定子励磁线圈通入直流电后,在转子励磁绕组上感应出转子励磁电流,从而实现电机的无刷化励磁。比起传统的三级式无刷励磁方案,该种电机可以在无励磁机的情况下实现转子励磁电机的无刷化励磁,极大地减小了发电系统的体积。但是该种方案的励磁效率较低。在同样体积下,感应励磁电励磁同步电机产生的功率只有普通同步电机的1/2到2/3。为了尽量提高励磁效率,感应励磁电励磁同步电机的气隙必须尽量小,使得电机的电枢反应变大,电机的外特性变软。为了解决这一问题,有日本学者提出在发电机输出端并联电容,利用增磁作用抑制电枢反应。但是电容的增加也增加了发电系统的复杂度和体积重量。在此基础上,国内外的学者做了许多研究以提高电机输出功率,以实现感应励磁电机的高功率密度。混合励磁同步电机拥有励磁绕组和永磁体两套励磁源,通过合理的设计拥有电压的可调性好和功率密度高的优点。混合励磁同步电机的励磁绕组可以安放于定子,也可以安放于转子。对于转子励磁电机需要引入电刷滑环实现直流励磁,电刷和滑环需要定期更换,安放使用不当可能导致火花。另外,还可以运用三级式无刷励磁方案,但是副励磁机、励磁机的引入增大了发电系统的体积和轴向长度。
技术实现思路
本专利技术提出的是一种感应励磁式混合励磁无刷同步电机,其目的:针对转子励磁混合励磁电机的无刷励磁问题,实现转子励磁混合励磁电机的无刷化励磁。混合励磁电机中存在永磁体,使其具有了和永磁电机类似的抗电枢反应能力。由于永磁体的存在,同时混合励磁电机的功率密度远高于电励磁电机,可解决传统方案中励磁效率低的问题。本专利技术的技术解决方案:其结构是电机采有两套励磁源,包括永磁体和电励磁绕组,永磁体安放于转子;电励磁绕组分为定子励磁绕组和转子励磁绕组;定子部分包括定子铁心,电枢绕组,定子励磁绕组,端盖,机壳,其中电枢绕组和定子励磁绕组嵌在定子槽中,端盖安装于机壳的两端,定子槽开设于沿圆周方向开设的定子铁心中;转子部分包括转子励磁绕组、转子铁心、转轴、整流二极管,其中转子励磁绕组安放于转子槽内;转子励磁绕组有多个,多个转子励磁绕组分别经二极管短接;当定子励磁绕组通入直流电时,气隙中建立起恒定的磁场,随着转子的旋转,该磁场在转子励磁绕组中感应出电势,经二极管单波整流后得到脉动励磁电流,从而达到控制气隙磁密大小的目的,实现发电机的调压功能。本专利技术的优点:1)无需副励磁机,励磁机,即可实现转子励磁式混合励磁电机的无刷化励磁;2)本专利技术克服了普通电励磁感应电机电枢反应较大,整体输出功率不高的缺点电枢反应小,功率密度高的特点;3)励磁方式简单,无需配备专门的励磁方式,现有的励磁调压方法均可运用于该种电机。本专利技术采用感应励磁,解决了转子励磁电机无刷励磁的难题。可以很好地控制永磁磁势,从而控制气隙磁密的大小,起到了调节电压的目的。由于采用了混合励磁的励磁模式,克服了传统电励磁感应励磁电机电枢反应大,功率密度低的不足。附图说明图1是感应励磁式混合励磁无刷同步电机结构图。图2是基于切向/径向混合励磁电机的感应励磁混合励磁电机结构图。图3是定子励磁电流所建立的磁场,以一对极为例说明定子励磁电流建立的磁场示意图。图4是无励磁电流时的磁场分布情况示意图。图5是通入励磁电流时的磁场分布情况示意图。图6是转子励磁绕组连接方式示意图。图中的I为定子铁心,2为电枢绕组,3为定子励磁绕组,4为定子槽,5为转子铁心,6为永磁体,7为转子槽,8为转轴,9为转子励磁绕组,10为整流二极管,11为转子极靴,12为转子齿,13为定子齿,14为定子励磁电流所建立的磁场、15为无定子励磁电流时的永磁体磁场、16为有定子励磁电流时永磁体磁场、17为有定子励磁电流时转子励磁绕组磁场。具体实施方式本专利技术的实现方法可由多种。电机可以分为旋转磁极式和旋转电枢式,定子铁心可以是凸极结构,也可以是隐极结构,电枢绕组可以是任意交流绕组形式。转子铁心5可以是凸极结构也可以是隐极结构,永磁体6安放于转子铁芯5上。对照附图1,感应励磁混合励磁无刷同步电机,其结构是电机采有两套励磁源,包括永磁体6和电励磁绕组,永磁体6安放于转子;电励磁绕组分为定子励磁绕组和转子励磁绕组9 ;定子部分包括定子铁心,电枢绕组2,定子励磁绕组3,端盖,机壳,其中电枢绕组2和定子励磁绕组3嵌入定子槽中,端盖安装于机壳的两端;转子部分包括转子励磁绕组9、转子铁心5、转轴、整流二极管10,其中转子励磁绕组9安放于转子槽内,转子励磁绕组9通过整流二极管10短接,所述的电枢绕组2可为任意交流绕组形式,定子励磁绕组3为集中绕组,极对数不限,转子上安放了永磁体6和转子励磁绕组9,构成了混合励磁结构;转轴位于转子铁心圆心部位。各个定子槽之间的铁心部分为定子齿;各个转子槽之间的铁心部分为转子齿。当定子励磁绕组3通入直流电时,气隙中建立起恒定的磁场;随着转子的旋转,该磁场在转子励磁绕组9中产生感应电势,经二极管10整流后得到脉动励磁电流,从而达到控制气隙磁密大小的目的。对照附图2,基于切向/径向混合励磁电机的感应励磁混合励磁电机,其结构包括定子铁心1,电枢绕组2,定子励磁绕组3,定子槽4,转子铁心5,永磁体6,转子槽7,转轴8,转子励磁绕组9,整流二极管10,转子极靴11,转子齿12,定子齿13,其中电枢绕组2和定子励磁绕组3嵌在定子槽4中,定子槽4开设于沿圆周方向开设的定子铁心I中,从多个转子励磁绕组9安放于转子槽7内,分别经二极管10短接,多个永磁体6安放于转子铁芯5上,分别嵌入相邻两个转子极靴11间,相邻的两块永磁体6极性相对,磁场为切向;转子励磁绕组9产生的磁场为径向,在定子槽4中安放定子励磁绕组3,建立恒定磁场在转子励磁绕组9上感应出脉动的励磁电流,所产生的径向磁场控制永磁体磁势进入气隙的大小,起到了通过改变定子励磁电流即可控制气隙磁密大小的目的。转轴8位于转子铁心5圆心部位。各个定子槽4之间的铁心部分为定子齿13 ;各个转子槽7之间的铁心部分为转子齿12。所述电机的的转子上拥有转子励磁绕组9和永磁体6两套磁源,其数目以及安放位置没有特别限制,根据电机具体性能具体设计。定子和转子为隐极结构或凸极结构,定子电枢绕组2设计为任意交流绕组,包括集中绕组、分布绕组,单相、三相和多相,是单层绕组或双层绕组多种形式的交流绕组;定子励磁绕组3和转子励磁绕组9为集中绕组。励磁方式为向定子励磁绕组通入直流电。以图3中的基于切向/径向混合励磁电机的感应励磁混合励磁电机为实例。在该实例中,电机的定子槽数为36,转子槽数为4。定子励磁极对数为1,转子励磁极对数为2。定子铁心I是隐极结构,也可以是凸极结构。电枢绕组2和定子励磁绕3嵌入槽4中,层序不受限制。实例中,电枢绕组2为三相分布绕组,定子励磁绕组3采用集中绕组绕制方式。转子励磁绕组9安放于转子槽7中。多个转子励磁绕组9彼此独立,分别通过一个二极管短接。永磁块6分别嵌入相邻两个极靴11间,永磁磁场形成切向结构,相邻两永磁体6并联,且与该磁极上励磁线圈产生的磁本文档来自技高网...
【技术保护点】
感应励磁混合励磁无刷同步电机,其特征是电机采有两套励磁源,包括永磁体和电励磁绕组,永磁体安放于转子;电励磁绕组分为定子励磁绕组和转子励磁绕组;定子部分包括定子铁心,电枢绕组,定子励磁绕组,端盖,机壳,其中电枢绕组和定子励磁绕组嵌在定子槽中,端盖安装于机壳的两端,定子槽开设于沿圆周方向开设的定子铁心中;转子部分包括转子励磁绕组、转子铁心、转轴、整流二极管,其中转子励磁绕组安放于转子槽内,多个转子励磁绕组分别经二极管短接;当定子励磁绕组通入直流电时,气隙中建立起恒定的磁场,随着转子的旋转,该磁场在转子励磁绕组中感应出电势,经二极管单波整流后得到脉动励磁电流,从而达到控制气隙磁密大小的目的,实现发电机的调压功能。
【技术特征摘要】
【专利技术属性】
技术研发人员:朱姝姝,刘闯,干兴业,符慧,胡耀华,宁银行,
申请(专利权)人:南京航空航天大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。