基于无线传感器网络的水工安全监测系统技术方案

技术编号:8800714 阅读:290 留言:0更新日期:2013-06-13 05:27
本发明专利技术公开一种基于无线传感器网络的水工安全监测系统,包括监测节点、汇聚节点和测控中心。监测节点包括基本主控电路、数据采集电路和无线通信电路,汇聚节点包括基本主控电路和无线通信电路,测控中心包括连接互联网的测控中心计算机,或包括中心节点和与该中心节点相连的测控中心计算机。若干监测节点通过由YD-Zigbee无线通信接口构成的微小功率无线通道,形成一个自组织的无线传感器网络,适时采集水库水位、雨量及渗压、应变、位移、渗流状态参数数据,以单跳或多跳的形式与关联的汇聚节点交换数据;多个汇聚节点各自集中处理来自相应若干监测节点交换过来的现场数据,并定时传输到测控中心处理。本发明专利技术功耗小、成本低。

【技术实现步骤摘要】

本专利技术涉及基于无线传感器网络的水工安全监测系统,直接应用于水利行业。
技术介绍
传感器网络是全球未来四大高技术产业之一。作为当前各国研究的热点,无线传感器网络已逐步开始应用于许多领域,包括基础设施监测、军事领域、环境科学和医疗健康等方面。目前,水工安全监测主要采用传感器+有线传输+集中式MCU的系统结构,个别研究单位和公司推出了基于GPRS的无线渗压监测装置,但还不是真正意义上的无线传感器网络技术概念,而且这样运用还受公共网络覆盖、功耗、运行费用等因素的严重制约。
技术实现思路
本专利技术的目的就是为了克服
技术介绍
的不足,提出一种基于无线传感器网络的水工安全监测系统,功耗小、成本低。为实现上述目的,本专利技术基于无线传感器网络的水工安全监测系统,包括监测节点、汇聚节点和测控中心。监测节点包括基本主控电路、数据采集电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOCK及FLASH存储器电路;数据采集电路包含与单片机相连的采集渗压、应变、位移或渗流信息的振弦式传感器采集电路、与单片机相连的采集水位信息的水位传感器采集电路、与单片机相连的采集雨量信息的雨量传感器采集电路中的任一项采集电路、任二项采集电路或全部采集电路;无线通信电路包含与单片机相连的YD-Zigbee无线通信接口。汇聚节点包括基本主控电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOLCK及FLASH存储器电路;无线通信电路包含与单片机相连的YD-Zigbee无线通信接口,或分别与单片机相连的YD-Zigbee无线通信接口和GPRS/GSM无线通信接口。测控中心包括连接互联网的测控中心计算机,或包括中心节点和与该中心节点相连的测控中心计算机,该中心节点包含单片机和与该单片机相连的YD-Zigbee无线通信接□。若干监测节点相邻在一个有限的区域范围之内,该若干监测节点与其关联的汇聚节点之间通过由YD-Zigbee无线通信接口构成的微小功率无线通道,形成一个自组织的无线传感器网络,适时采集水库水位、雨量及渗压、应变、位移、渗流状态参数数据,以单跳或多跳的形式与关联的汇聚节点交换数据;多个汇聚节点各自集中处理来自相应有限区域范围内的若干监测节点交换过来的现场数据,视汇聚节点与测控中心距离的远近,以方式一或方式二定时传输到测控中心处理。所述方式一为:当汇聚节点与测控中心距离较近时,汇聚节点直接通过由YD-Zigbee无线通信接口构成的微小功率无线通道将现场数据交换至中心节点,再传输给测控中心计算机处理;所述方式二为:当汇聚节点与测控中心距离较远时,汇聚节点通过由GPRS/GSM无线通信接口连通的INTERNET/GPRS网络将现场数据传输到连接互联网的测控中心计算机处理,测控中心计算机的数据分析系统通过建立的模型对采集到的现场数据进行分析,评估水工当前的安全状态,进而作出预报预测。在一般实施方式中,所述监测节点的振弦式传感器采集电路包含振弦传感器、激振电路、信号放大与整形电路、恒流源与温度转换电路以及放大电路与A/D转换电路,监测节点单片机的I/O 口输出激振脉冲,经激振电路驱动振弦传感器的感应线圈发生谐振;所述信号放大与整形电路输入振弦式传感器输出的谐振频率信号,对该谐振频率信号进行放大、整流和整形,输出标准的方波信号至监测节点单片机的I/O 口,启动片内计数器计数,从而得出振弦谐振频率值,再经过单片机转换计算得到所需测量值。所述恒流源与温度转换电路连接振弦传感器的热敏电阻,对振弦传感器的热敏电阻提供恒定电流,并将该振弦传感器热敏电阻两端的电压降输入放大电路与A/D转换电路进行模拟量至数字量转换,转换后的数字量信号由监测节点单片机读取,即为传感器环境温度值。在高精度实施方式中,所述监测节点的振弦式传感器采集电路还包含设置在监测节点单片机和信号放大与整形电路之间的分频与计数器电路,该分频与计数器电路包含D触发器、与门A、与门B、时钟发生器、分频电路和外部计数器,所述信号放大与整形电路的输出端分别连接D触发器的时钟CP端和与门A的第一输入端,该D触发器的D端和R端分别连接单片机的I/O 口,该D触发器的Q端分别连接与门A的第二输入端、单片机的中断口INT和与门B的第一输入端,所述时钟发生器输出的时钟信号经分频电路分别输入与门B的第二输入端和外部计数器的时钟输入端,与门A的输出端连接单片机的I/O 口 Tl端,与门B的输出端连接外部计数器的启动停止端,该外部计数器的计数值输入单片机。首先,将监测节点单片机内部定时器、计数器及外部计数器初始化,D触发器置0,置D触发器D端为高电平;当捉俘到信号放大与整形电路输出的待测脉冲上升沿时,D触发器Q端翻转为高电平,开启与门A和与门B,同时触发单片机的INT引脚,打开片内定时器定时中断,单片机片内计数器和外部计数器两个计数器同时开始计数;当片内定时器定时时间到,置D触发器D端为低电平,当捉俘到待测脉冲上升沿时,D触发器Q端翻转为低电平,使两与门同时关闭,停止计数;单片机读取两个计数器计数值,获得待测脉冲的频率=分频电路输出的时钟频率X单片机片内计数器计数值/外部计数器计数值。所述外部计数器优选8253计数器芯片。所述监测节点的水位传感器采集电路包含水位传感器和设置在水位传感器和单片机之间的水位传感器接口电路,所述监测节点的雨量传感器采集电路包含雨量传感器和设置在雨量传感器和单片机之间的雨量传感器接口电路。所述水位传感器优选浮子式编码水位计,所述水位传感器接口电路采用格雷码编码器接口电路;所述雨量传感器优选翻斗式雨量计,所述雨量传感器接口电路采用霍尔开关接口电路。在一种最佳实施方式中,所述格雷码编码器接口电路和霍尔开关接口电路均包含设置在传感器开关信号输出端与地之间的P6KE18A稳压瞬态抑制二极管和电容,设置在单片机的I/O 口与地之间的ZD系列二极管,设置在单片机电源VCC与传感器开关信号输出端之间的一电阻,设置在传感器开关信号输出端与单片机的I/O 口之间的另一电阻。所述监测节点的无线通信电路还可包含与监测节点单片机相连的GPRS/GSM无线通信接口。所述GPRS/GSM无线通信接口最佳经带通断控制端的开关电源芯片供电,该开关电源芯片的通断控制端连接相应单片机的I/o 口。所述监测节点和汇聚节点还可设有连接单片机的通信扩充接口,该通信扩充接口优选RS232接口。本专利技术基于无线传感器网络的水工安全监测系统,实现了数据在各智能监测节点和测控中心的双备份,实现分布式数据存储和处理,增加系统数据的可用性和可靠性;通过无线通信协议,建立适于水工安全监测的数据分发机制,降低算法复杂度和信息收集过程的功率开销,系统软硬件成本和功耗比大大降低;省却了各类线路铺设,有效避免了长距离传输线路分布参数变化影响带来的测量精度等问题。本专利技术从根本上改变了传统安装施工方式和维护维修方法,降低工程实施及管理成本,使水工安全监测技术大面积推广应用成为可能;使用本专利技术,免去工程开挖等土建量,综合直接投资费用节省至少50%以上,年平均维护管理费用节省至少60%以上,是水工工程信息化领域上的一次重大变革。附图说明图1为本专利技术的拓扑结构图;图2为实施例监测节点的本文档来自技高网...

【技术保护点】
基于无线传感器网络的水工安全监测系统,其特征在于:包括监测节点、汇聚节点和测控中心;监测节点包括基本主控电路、数据采集电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOCK?及FLASH存储器电路;数据采集电路包含与单片机相连的采集渗压、应变、位移或渗流信息的振弦式传感器采集电路、与单片机相连的采集水位信息的水位传感器采集电路、与单片机相连的采集雨量信息的雨量传感器采集电路中的任一项采集电路、任二项采集电路或全部采集电路;无线通信电路包含与单片机相连的YD?Zigbee?无线通信接口;????汇聚节点包括基本主控电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOLCK?及FLASH存储器电路;无线通信电路包含与单片机相连的YD?Zigbee?无线通信接口,或分别与单片机相连的YD?Zigbee?无线通信接口和GPRS/GSM无线通信接口;????测控中心包括连接互联网的测控中心计算机,或包括中心节点和与该中心节点相连的测控中心计算机,该中心节点包含单片机和与该单片机相连的YD?Zigbee?无线通信接口;若干监测节点相邻在一个有限的区域范围之内,该若干监测节点与其关联的汇聚节点之间通过由YD?Zigbee?无线通信接口构成的微小功率无线通道,形成一个自组织的无线传感器网络,适时采集水库水位、雨量及渗压、应变、位移、渗流状态参数数据,以单跳或多跳的形式与关联的汇聚节点交换数据;多个汇聚节点各自集中处理来自相应有限区域范围内的若干监测节点交换过来的现场数据,视汇聚节点与测控中心距离的远近,以方式一或方式二定时传输到测控中心处理;所述方式一为:当汇聚节点与测控中心距离较近时,汇聚节点直接通过由YD?Zigbee?无线通信接口构成的微小功率无线通道将数据交换至中心节点,再传输给测控中心计算机处理;所述方式二为:当汇聚节点与测控中心距离较远时,汇聚节点通过由GPRS/GSM无线通信接口连通的INTERNET/GPRS网络将现场数据传输到连接互联网的测控中心计算机处理,测控中心计算机的数据分析系统通过建立的模型对采集到的现场数据进行分析,评估水工当前的安全状态,进而作出预报预测。...

【技术特征摘要】
1.基于无线传感器网络的水工安全监测系统,其特征在于:包括监测节点、汇聚节点和测控中心; 监测节点包括基本主控电路、数据采集电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOCK及FLASH存储器电路;数据采集电路包含与单片机相连的采集渗压、应变、位移或渗流信息的振弦式传感器采集电路、与单片机相连的采集水位信息的水位传感器采集电路、与单片机相连的采集雨量信息的雨量传感器采集电路中的任一项采集电路、任二项采集电路或全部采集电路;无线通信电路包含与单片机相连的YD-Zigbee无线通信接口 ; 汇聚节点包括基本主控电路和无线通信电路,其中:基本主控电路包含单片机和分别与该单片机相连的电源电路、硬件时钟CLOLCK及FLASH存储器电路;无线通信电路包含与单片机相连的YD-Zigbee无线通信接口,或分别与单片机相连的YD-Zigbee无线通信接口和GPRS/GSM无线通信接口 ; 测控中心包括连接互联网的测控中心计算机,或包括中心节点和与该中心节点相连的测控中心计算机,该中心节点包含单片机和与该单片机相连的YD-Zigbee无线通信接口 ;若干监测节点相邻在一个有限的区域范围之内,该若干监测节点与其关联的汇聚节点之间通过由YD-Zigbee无线通信接口构成的微小功率无线通道,形成一个自组织的无线传感器网络,适时采集水库水位、雨量及渗压、应变、位移、渗流状态参数数据,以单跳或多跳的形式与关联的汇聚节点交换数据;多个汇聚节点各自集中处理来自相应有限区域范围内的若干监测节点交换过来的现场数据,视汇聚节点与测控中心距离的远近,以方式一或方式二定时传输到测控中心处理;所述方式一为:当汇聚节点与测控中心距离较近时,汇聚节点直接通过由YD-Zigbee无线通信接口构成的微小功率无线通道将数据交换至中心节点,再传输给测控中心计算机处理;所述方式二为:当汇聚节点与测控中心距离较远时,汇聚节点通过由GPRS/GSM无线通信接口连通的INTERNET/GPRS网络将现场数据传输到连接互联网的测控中心计算机处理,测控中心计算机的数据分析系统通过建立的模型对采集到的现场数据进行分析,评估水工当前的安全状态,进而作出预报预测。2.根据权利要求 1所述的水工安全监测系统,其特征在于:所述监测节点的振弦式传感器采集电路包含振弦传感器、激振电路、信号放大与整形电路、恒流源与温度转换电路以及放大电路与A/D转换电路,监测节点单片机的I/O 口输出激振脉冲,经激振电路驱动振弦传感器的感应线圈发生谐振;所述信号放大与整形电路输入振弦式传感器输出的谐振频率信号,对该谐振频率信号进行放大、整流和整形,输出标准的方波信号至监测节点单片机的I/O 口,启动片内计数器计数,从而得出振弦谐振频率值,再经过单片机转换计算得到所需测量值;所述恒流源与温度转换电路连接振弦传感器的热敏电阻,对振弦传感器的热敏电阻提供恒定电流,并将该振弦传感器热敏电阻两端的电压降输入放大电路与A/D转换电路进行模拟量至数字量转换,转换后的数字量信号由监测节点单片机读取,即为传感...

【专利技术属性】
技术研发人员:许旭生廖刚坚滕军曾庚运丁永清黎洪生
申请(专利权)人:广东省水利电力勘测设计研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1