本发明专利技术涉及一种生产优质低凝点马达燃料的两段法加氢方法,包括:生物油脂原料与氢气通过至少含有两个加氢反应器的第一段加氢反应区,首先通过低温操作的反应器,然后通过高温操作的反应器,富氢气体在第一段循环利用,液体进入第二段加氢改质反应区。加氢改质的副氢气体在第二段循环使用,液体产品分馏得到石脑油和低凝点柴油。在反应状态下,第一段使用的加氢催化剂的活性组分为硫化态的W、Mo、Ni和Co中一种或几种,第二段使用的加氢催化剂的加氢活性组分为还原态的Pt和/或Pd。与现有技术相比,本发明专利技术方法可以在生产低凝点马达燃料的同时保证催化剂的活性稳定性和装置长周期稳定运行。
【技术实现步骤摘要】
本专利技术涉及一种加氢方法,特别是一种以生物油脂为原料油,直接。
技术介绍
目前全球范围内的能源主要来源于化石能源,其中石油是马达燃料的最主要来源。石油属于不可再生能源,不但资源日益枯竭,而且重质化和劣质化加剧,而世界经济持续发展、环保法规日益严格需要生产大量轻质清洁燃料,这些都要求对现有的炼油技术进行完善和改进的同时增加新的石油替代品,以最低的成本生产出符合要求的产品。生物油脂作为可再生资源,得到世界的广泛重视,各研究单位和企业都在努力进行其作为清洁能源的研究。利用酯交换的方法生产生物柴油(一般为脂肪酸甲酯)已经是成熟的技术,但是由于脂肪酸甲酯氧含量高,尽管许多国家和地区陆续出台了生物柴油的标准,但是并不适宜所有的内燃机。生物油脂通过加氢的方法生产马达燃料,即将氧全部除去或者部分除去生产符合马达燃料标准的产品,这种方法可以直接满足现有市场的要求。现有的动植物油脂加氢法生产马达燃料的加工技术,US20060186020、EP1693432、CN101321847A、CN200710012090.6、CN200680045053.9、CN200710065393.4、CN200780035038.0.CN200710012208.5.CN200780028314.0 和 CN101029245A 等公开了植物油加氢转化工艺,采用焦化汽油馏分、柴油馏分(直馏柴油、LCO和焦化瓦斯油),蜡油馏分等石油烃类馏分与生物油脂混合进入加氢催化剂床层,生产柴油产品或者蒸汽裂解制乙烯原料等。US5705722公开了含不饱和脂肪酸、脂等植物油和动物油混合后加氢生产柴油馏分范围的柴油调和组分。EP1741767和EP1741768公开了一种以动植物油脂生产柴油馏分的方法,主要为动植物油脂首先经过加氢处理,然后通过异构化催化剂床层,得到低凝点柴油组分,但是由于加氢处理过程中生成水,对异构化催化剂造成非常不利的影响,装置不能长周期稳定运行。包括上述方法的生物油脂加氢过程中,遇到的主要问题之一是催化剂的稳定性较差,运转周期缩短,需要经常停工更换催化剂。特别是单独以生物油脂为原料或生物油脂混合比例较高时,加氢催化剂的运转周期更受到明显的影响,无法满足工业应用的要求。
技术实现思路
针对现有技术的不足,本专利技术提供一种,以生物油脂为原料油,在加氢的条件下,首先通过使用硫化型催化剂第一段反应区,然后通过使用贵金属加氢改质催化剂的第二段反应区,直接生产低凝点马达燃料的方法,可以直接生产高质量的柴油调和产品,使柴油产品不会发生常规动植物油脂制得的生物柴油霉变的情况, 同时可以保证加氢催化剂具有较长的运转周期,适合于工业应用。本专利技术包括如下内容:(a)生物油脂中的一种或几种为原料油; (b)在加氢操作条件下,原料油与氢气通过至少两个加氢反应器的第一段反应区,加氢反应器中装填加氢催化剂,原料油和氢气首先通过低温操作的加氢反应器,然后通过高温操作的加氢反应器,在反应状态下,加氢催化剂的活性组分为硫化态的W、Mo、Ni和Co中一种或几种; (c)第一段反应区加氢流出物分离为气相和液相,气相脱水处理后在第一段反应区循环使用,液相与循环气混合后进入使用加氢改质催化剂的第二段反应区,在反应状态下,力口氢改质催化剂的活性金属组分为还原态的Pt和/或Pd ; (d)第二段反应区反应 流出物气液分离得到的气相在第二段反应区循环使用,第二段反应区反应流出物气液分离得到的液相在分馏塔中分馏得到石脑油和低凝点柴油; Ce)在第一段反应物料中补充含硫物质,以维持第一段反应区循环气中硫化氢含量。本专利技术方法步骤(a)中,使用的生物油脂可以包括植物油或动物油脂,植物油包括大豆油、花生油、蓖麻油、菜籽油、玉米油、橄榄油、棕榈油、椰子油、桐油、亚麻油、芝麻油、棉籽油、葵花籽油和米糠油等中的一种或几种,动物油脂包括牛油、猪油、羊油和鱼油等中的一种或几种。本专利技术方法步骤(b)中,低温操作的加氢处理反应器的加氢操作条件一般为反应压力3.0MPa 20.0MPa,氢油体积比为200:1 3000:1,体积空速为0.31Γ1 6.01Γ1,平均反应温度120°C 280°C ;高温操作的加氢处理反应器的操作条件为反应压力3.0MPa 20.0MPa,氢油体积比200:3000:1,体积空速0.3h-^6.0h—1,平均反应温度比低温操作的加氢处理反应器高50°C 300°C,优选高8(T220°C。低温操作的加氢处理反应器与高温操作的加氢处理反应器之间设置加热炉或者换热器,以调整高温操作的加氢处理反应器的反应温度。 本专利技术方法步骤(b)中,反应物料首先通过低温操作的加氢反应器中,使用的加氢催化剂的活性组分以氧化物计的重量含量为3% 20%。反应物料继续通过高温操作的加氢反应器,高温操作的加氢反应器中使用的加氢催化剂的活性组分以氧化物重量计为15% 40%。优选高温操作的加氢反应器中催化剂的活性组分含量高于低温操作加氢反应器中催化剂3 25个百分点。反应器一般可以设置2飞个,优选为2个。每个加氢反应器中可以装填一种催化剂,也可以装填多种催化剂。加氢催化剂的载体一般为氧化铝、无定型硅铝、氧化硅、氧化钛等,同时可以含有其它助剂,如P、S1、B、T1、Zr等。可以采用市售催化剂,也可以按本领域现有方法制备。加氢活性组分为氧化态的催化剂,在使用之前进行常规的硫化处理,使加氢活性组分转化为硫化态。商业加氢催化剂主要有,如抚顺石油化工研究院(FRIPP)研制开发的 3926、3936、CH-20、FF-14、FF-18、FF-24、FF-26、FF-36、FH-98、FH-UDS、FZC-41等加氢催化剂,IFP公司的HR-416、HR-448等加氢催化剂,CLG公司的ICR174、ICR178、ICR179 等加氢催化剂,UOP 公司新开发了 HC-P、HC-K UF-210/220, Topsor 公司的 ΤΚ-525、ΤΚ-555、TK-557 等加氢催化剂,AKZO 公司的 KF-752、KF-840、KF-848、KF-901、KF-907等加氢催化剂。本专利技术方法步骤(b)中,第一段反应区加氢活性组分为氧化态的催化剂,在使用之前进行常规的硫化处理,使加氢活性组分转化为硫化态,或者使用已器外预硫化好的催化剂。本专利技术方法步骤(C)中,第二段反应区的加氢操作条件一般为反应压力3.0MPa 20.0MPa,氢油体积比为200:1 3000:1,体积空速为0.31Γ1 6.0h—1,平均反应温度1800C "4650C ;优选的操作条件为反应压力3.0MPa 18.0MPa,氢油体积比300:1 2500:1,体积空速0.4h-^4.0h—1,平均反应温度200°C 445°C。第二段反应区的操作压力可以与第一段反应区相同,也可以不同。进入第二段反应区的液相可以是第一段反应区气液分离后的液相物料,也可以是第一段反应区气液分离后的液相物料经过分馏塔分馏得到的柴油馏分。本专利技术方法步骤(C)中,第二段反应区的加氢改质催化剂具有异构功能,如含有β分子筛、SAP0-11分子筛、SAPO-41、NU-10分子筛或ZSM-22分子筛等组分。加氢改质催化剂以贵金属Pt和/或Pd的元素计,贵金属加氢活本文档来自技高网...
【技术保护点】
一种生产优质低凝点马达燃料的两段法加氢方法,其特征在于包括如下内容:(a)生物油脂中的一种或几种为原料油;(b)在加氢操作条件下,原料油与氢气通过至少两个加氢反应器的第一段反应区,加氢反应器中装填加氢催化剂,原料油和氢气首先通过低温操作的加氢反应器,然后通过高温操作的加氢反应器,在反应状态下,加氢催化剂的活性组分为硫化态的W、Mo、Ni和Co中一种或几种;(c)第一段反应区加氢流出物分离为气相和液相,气相脱水处理后在第一段反应区循环使用,液相与循环气混合后进入使用加氢改质催化剂的第二段反应区,在反应状态下,加氢改质催化剂的活性金属组分为还原态的Pt和/或Pd;(d)第二段反应区反应流出物气液分离得到的气相在第二段反应区循环使用,第二段反应区反应流出物气液分离得到的液相在分馏塔中分馏得到石脑油和低凝点柴油;(e)在第一段反应物料中补充含硫物质,以维持第一段反应区循环气中硫化氢含量。
【技术特征摘要】
【专利技术属性】
技术研发人员:刘涛,单广波,李宝忠,杨成敏,白振民,曾榕辉,彭冲,
申请(专利权)人:中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。