本发明专利技术涉及一种高氮原料加氢裂化方法,以高氮重质馏分油为原料,采用两段工艺流程,在加氢精制条件下,重质馏分油原料和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,脱氮率控制为60%~95%,第一段反应区流出物气液分离后的气相经脱杂质后循环使用,液相分馏得到轻质油品和尾油;尾油与氢气混合进入第二段反应区,第二段反应区使用加氢精制催化剂和加氢裂化催化剂,第二段反应区反应流出物进入分离系统。同现有两段加氢裂化技术相比,本发明专利技术工艺流程更加灵活,可加工更加劣质的原料;同现有一段串联加氢裂化技术相比,可大大提高装置的加工能力。同时本发明专利技术方法可以在相对缓和的条件下操作,有利于提高加氢装置的运转周期。
【技术实现步骤摘要】
本专利技术公开了一种加氢裂化方法,特别是一种加工高氮原料的两段加氢裂化方法。
技术介绍
随着我国经济的高速发展,石油加工能力快速增长。与此同时,国内加氢裂化技术也获得了大规模的工业应用,截至2009年底,我国正在运行的加氢裂化装置有30多套,总加工能力已经超过40.0Mt/a,加工能力跃居世界第二位。另外,由于国内原油质量的逐年变差,进口高硫原油加工量的大幅增加,环保对炼油工艺及石油产品质量的要求日趋严格,以及市场对清洁燃油及化工原料需求量的不断增加,尤其是作为交通运输燃料的清洁中间馏分油和为重整、乙烯等装置提供的优质进料,因此市场对加氢裂化技术水平的进步提出了更高的要求。加氢裂化所加工的原料范围宽,产品方案灵活,液体产品收率高,可获得优质动力燃料和化工原料,加氢裂化工艺和技术越来越受到世界各大石油公司的普遍重视。加氢裂化工艺一般可分为一段法和两段法,其中一段法又包括单段(也称单段一齐IJ)和单段串联。操作方式主要分为循环操作方式和一次通过操作方式。单段工艺使用一种耐有机氮的加氢裂化催化剂,原料直接通过加氢裂化催化剂,工艺过程最简单,操作空速较高,但加工的原料范围窄,产品中航煤质量较差。单段串联使用加氢精制催化剂和加氢裂化催化剂串联,中间无需分离,因为所用加氢裂化催化剂不具有耐有机氮的能力,要求在加氢精制反应器将硫氮杂质脱除干净,所以一般只能在较低空速下操作。随着炼油企业的日趋大型化,规划建设的大型加氢裂化装置越来越多,以达到规模效益。这些装置的单套加工能力大都在200万吨/年以上。这些大型加氢裂化装置如果采用常规单段串联或单段工艺技术按单套装置建设,由于反应器、原料泵、换热器等特大型设备的制造费用和运输费用巨大,将使装置建设投资大大增加,影响企业的经济效益;而如果建成两套装置,则将由于设备台数显著增加, 同样也将增加装置的建设投资,并将增加操作费用。现有的两段加氢裂化工艺,如US3702818,涉及第一段原料油首先经过加氢精制段脱除杂质,分离的液体进入加氢裂化段,第一段尾油进入第二段继续裂化,这是常规两段加氢裂化工艺过程。US3549515第一段使用一段串联流程,第一段尾油进入第二段继续裂化,存在着上述一段串联工艺的不足。US4404088涉及增加一个加氢裂化反应段,在改变产品方案时提高液体产品收率,但流程较长。这些技术虽然方案灵活,但工艺流程复杂,投资增加。CN100526433涉及第一段采用单段两剂流程,第一段尾油进入第二段继续裂化,最大量生产中间馏分油。CN1940030A涉及使用热高分,将高氮原料和低氮原料分开加工,最大量生产柴油。针对目前原油质量变差,杂质含量增高,以及原油减压深坺和其它非常规能源的开发,使得加氢裂化的原料杂质含量越来越高,特别是某些加氢裂化原料的氮含量较高,而现有加氢裂化方法处理高氮含量的加氢裂化原料时,需要较高的反应温度或较低的操作空速,装置的加工能力下降,同时能耗增加,操作周期缩短。
技术实现思路
针对现有技术的不足,本专利技术的目的在于提供一种改进的两段加氢裂化工艺,力口工高氮原料油。同现有两段加氢裂化技术相比,工艺流程更加灵活,可加工更加劣质的原料;同现有一段串联加氢裂化技术相比,可大大提高装置的产品质量和加工能力。本专利技术高氮原料加氢裂化方法包括如下内容:以高氮重质馏分油为原料,采用两段工艺流程,在加氢精制条件下,重质馏分油原料和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,第一段反应区的脱氮率一般控制为60% 95%,第一段反应区流出物气液分离后的气相经脱杂质后循环使用,第一段反应区流出物气液分离后的液相进入分馏系统得到轻质油品和尾油;尾油与氢气混合进入第二段反应区,第二段反应区沿反应物料流动方向依次使用加氢精制催化剂和加氢裂化催化剂,第二段反应区反应流出物进入分离系统,得到加氢裂化反应产物。本专利技术方法中,高氮重质馏分油原料的氮含量一般为1000μ g/g以上,优选为2500 μ g/g 以上,通常为 2000 15000 μ g/g。本专利技术方法中,第一段反应区的脱氮率优选控制为70% 90%。第一段反应区的反应温度为330 480°C,反应压力为5.0 20.0MPa,氢油体积比为100:1 4000:1,液时体积空速为0.2 4.0h—1。优选的操作条件为:反应温度为350 450°C,反应压力为8.0 17.0MPa,氢油体积比为400:1 2000:1,液时体积空速为0.5 3.0h—1。本专利技术方法中,第一段反应区流出物气液分离后的液相进入分馏系统得到轻质油品与尾油的分馏点为130 400°C,优选为165 385°C。可以设置一套分馏系统,第一段反应区和第二段反应区共用一套分馏系统;也可以设置两套分馏系统,第一段反应区和第二段反应区分别设置分馏系统。本专利技术方法中,第二段反应区中,反应温度为250 500°C,反应压力为5.0 20.0MPa,氢油体积比为100:1 4000:1,液时体积空速为1.0 10.0h—\优选为:反应温度为300 440°C,反应压力为8.0 17.0MPa,氢油体积比为400:1 2000:1,液时体积空速为1.0 4.0h—1。第二段反应区中,加氢精制催化剂与加氢裂化催化剂的体积比为3:1 1:5,优选为2:1 1:3。本专利技术方法中,根据装置规模,第一段反应区可以设置一台或几台反应器,第二段反应区也可以设置一台或几台反应器。第一段反应区和第二段反应区可以使用一套循环氢系统,也可以分别设置循环氢系统。 本专利技术方法中,加氢精制催化剂可以是本领域任意的产品,加氢裂化催化剂可以根据反应产物的分布要求选择适宜的产品,如为多产中间馏分油(煤油和柴油)则选择中油型加氢裂化催化剂,如为多产石脑油则选择轻油型加氢裂化催化剂。上述选择是本领域技术人员所熟知的内容。加氢精制催化剂和加氢裂化催化剂在反应状态下,加氢活性组分为硫化态。本专利技术方法中,第一段反应区主要发生原料的脱硫、脱氮、脱氧、芳烃饱和等反应;第二段反应区的加氢精制催化剂上继续进行发生加氢脱硫、脱氮、脱氧、芳烃饱和等反应,在加氢裂化催化剂上进行加氢裂化反应。与现有技术相比,本专利技术的优点:在加工高氮原料时,可以明显降低系统中的硫化氢和氨含量,提高氢分压,有效发挥加氢精制催化剂和加氢裂化催化剂的活性。本领域技术人员一般认为,加氢精制催化剂具有耐氮性,循环氢中的硫化氢和氨对催化剂没有抑制作用。但通过对现有加氢裂化工艺的深入分析得知,在加工高氮原料时,由于硫氮等杂质含量很高,反应生成大量的硫化氢和氨,对加氢精制催化剂的脱氮性能有明显影响,采用本领域常规方法时,需要在更高的反应温度下才能获得所需的脱氮效果。本专利技术通过优化两段加氢裂化工艺流程,将加氢精制催化剂按适宜比例分配到不同反应区中,实现了在相同加氢脱杂质深度的同时,降低了反应温度,提高了加氢精制流出物质量,并延长了运转周期。由于加氢精制催化剂也有较弱的酸性,系统中的氨分压很高,对加氢精制催化剂活性有一定的抑制作用。同时,较低的温度也可促进芳烃饱和反应,而脱氮反应一般为开环反应,从而使反应温度进一步降低。也就是说,在相同的空速下加工同一种高氮原料时,由于两段反应具有较高的氢分压和较快的芳烃饱和反应,一个反应器直接将其脱除到〈本文档来自技高网...
【技术保护点】
一种高氮原料加氢裂化方法,其特征在于包括如下内容:以高氮重质馏分油为原料,采用两段工艺流程,在加氢精制条件下,重质馏分油原料和氢气混合进入第一段反应区,第一段反应区使用加氢精制催化剂,第一段反应区的脱氮率控制为60%~95%,第一段反应区流出物气液分离后的气相经脱杂质后循环使用,第一段反应区流出物气液分离后的液相进入分馏系统得到轻质油品和尾油;尾油与氢气混合进入第二段反应区,第二段反应区沿反应物料流动方向依次使用加氢精制催化剂和加氢裂化催化剂,第二段反应区反应流出物进入分离系统,得到加氢裂化反应产物。
【技术特征摘要】
【专利技术属性】
技术研发人员:白振民,曾榕辉,刘继华,赵贵山,刘涛,李本哲,
申请(专利权)人:中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。