土地利用数据库支持的地类信息遥感自动识别方法技术

技术编号:8656174 阅读:200 留言:0更新日期:2013-05-01 23:53
本发明专利技术属于遥感图像处理领域,公开了一种土地利用数据库支持的地类信息遥感自动识别方法,包括:(1)依据地类属性值,从土地利用数据库中获取土地利用矢量数据,并从中筛选出大类图斑;(2)依据筛选结果,按面积从大到小提取每一种地类对应的若干个图斑;(3)沿图斑边界做向内缓冲处理;(4)以缓冲后的图斑作为样本区,对中分辨率遥感数据进行监督分类,获取地类信息;(5)通过DEM数据计算坡度数据,并用坡度数据过滤误分类的象元;(6)过滤合并细碎图斑,得到分类结果数据。本发明专利技术替代传统的人工选择样本区域的方式,有效节约信息提取时间,提高生产效率。

【技术实现步骤摘要】

本专利技术属于遥感图像处理领域,涉及。
技术介绍
监督分类是一种常见的遥感影像分类方法,需要以人工选取样本区域,为计算机自动分类提供依据,样本质量与遥感影像分类结果精度密切相关。在监督分类中,样本区域由操作人员根据具体遥感影像特征和遥感解译经验选取,不同的操作人员分类结果差异可能较大。
技术实现思路
本专利技术的目的是提供一种,实现样本区域自动提取和土地利用监督分类,缩短处理时间,提高生产效率。为实现上述目的,本专利技术提供的包括以下步骤(I)依据地类属性值,从土地利用数据库中获取土地利用矢量数据,并从中筛选出大类图斑;(2)依据筛选结果,按面积从大到小提取每一种地类对应的若干个图斑;(3)沿图斑边界做向内缓冲处理;(4)以缓冲后的图斑作为样本区,对中分辨率遥感数据进行监督分类,获取地类信息;(5)通过DEM数据计算坡度数据,并用坡度数据过滤误分类的象元;(6)过滤合并细碎图斑,得到分类结果数据。所述步骤(2)中提取图斑个数通过下述方法确定从面积最大的图斑开始按降序累加面积,直至面积累计超过该大类图斑总面积的60%,或者参加累加的图斑超过50个。所述步骤(3)中缓冲后的图斑面积占到原始图斑面积的60%至80%。本专利技术以土地利用数据库作为先验知识,通过对筛选的大面积土地利用斑块作向内缓冲,得到的结果可以认为是纯地类区域,然后使用该结果作为样本区。使用本方法自动提取的样本区主要受土地利用数据库的精度影响,而土地利用数据库是国家每年都对其更新,确保其地类的准确。所以在样本的选取上,本方法有着很高的可信度,同时克服了人工选取受人为因素影响较大的弊端。此外,使用DEM数据对上述分类结果进行修正,将山区误提取的水体重新归为林地,进一步提高了分类的精度。使用北京昌平地区和密云地区的北京一号卫星影像数据进行测试人工选取样本区大致需要半个小时(仅仅选取样本时间,不包含进行分类的运行时间);而采用本方法在普通的计算机中处理,在10分钟内直接可以处理得到初步的分类结果。附图说明图1为本专利技术的实施流程图;图2为执行缓冲区分析前后的对比;图3和图4为进行碎斑过滤合并前后的效果对比。具体实施例方式下面将结合图1,分步骤详述本专利技术:(I)依据地类属性值,对从土地利用数据库获取的土地利用矢量数据进行初步筛选现行土地利用分类将土地利用类别分为12个一级类,一级类共下设57个二级类,就中分辨率遥感数据对土地利用类别的识别能力而言,很多在土地利用结构中占比例较小的类别如沟渠、田坎等,是无法识别同时也无多大意义的,中分辨率遥感数据更多的是用于提取耕地、林地、建设用地、水体等大类信息。本步骤主要依据地类属性值,从土地利用数据库获取土地利用矢量数据,筛选大类图斑。土地利用数据库是按照中华人民共和国国土资源部颁布的《土地利用数据库标准》(TD/T 1016— 2007)建立的空间数据库,内容包括基础地理要素、土地利用要素、土地权属要素、基本农田要素、栅格要素、其他要素等,各类要素通过国土资源部年度土地变更调查更新,为土地管理各项业务的开展提供基础数据支撑。(2)依据筛选结果,按面积从大到小提取每一种地类对应的若干个图斑本步骤首先对每个大类对应的所有图斑按面积从大到小降序排列,然后从面积最大的图斑开始按降序累加面积,直至面积累计超过该大类图斑总面积的60%,或者参加累加的图斑超过50个,最后将这些图斑提取出来。(3)沿图斑边界做向内缓冲处理,使缓冲后的图斑面积占到原始图斑面积的60%至80%考虑到上一步骤提取出来的图斑边界很有可能是不同地类的分界线(例如界线一侧为耕地另一侧为建设用地),边界经过的像元是混合像元,因此为保证样本区域内是单一地类,本步骤沿图斑边界向内做缓冲处理,经验表明缓冲后的图斑面积占原始图斑面积的60%至80%左右最为适宜,也可根据实际情况自行设定。如图2a所示,该斑块的地类代码是032,表示是一块灌木林地,属于林地。从图中可以看出,在图斑边界区域(主要在右下侧),有很多光谱和林地差异很大的象元。如果在选取样本时将这些象元选取到样本区中,将会对分类的结果造成较大的影响。通过向内缓冲区处理后(图2b所示),可以看到样本区内的光谱信息基本一致。(4)以缓冲后的图斑作为样本区(简称Α0Ι),对中分辨率遥感数据进行监督分类,获取地类信息。以缓冲后的图斑作为样本区,采用监督分类对中分辨率遥感数据进行分类,从而获得土地利用的地类信息数据。(5)通过数字高程数据(DEM)计算坡度数据,并用坡度数据过滤误分类的象元。由于水体和山区林地的地物特征很类似,很容易将山区林地误分为水体,可通过以下处理将山区误提取的水体重新归为林地:首先使用DEM数据计算待分类区域的坡度数据。通过坡度数据可以知道,水体的坡度为O度,而山区的林地的坡度均大于O度,若类别为水体且坡度大于0,则将其设为林地。(6)过滤合并细碎图斑,得到土地利用地类结果数据。监督分类的结果会存在大量的细碎图斑,通过小碎斑的过滤合并,可以将细碎图斑进行去除。如图3是初步分类后的结果,图4是进行细碎图斑过滤合并后的结果。最后对分类结果进行矢量化,生成土地利用分类矢量数据,完成遥感分类信息的自动精细识别。本文档来自技高网...

【技术保护点】
一种土地利用数据库支持的地类信息遥感自动识别方法,包括以下步骤:(1)依据地类属性值,从土地利用数据库中获取土地利用矢量数据,并从中筛选出大类图斑;(2)依据筛选结果,按面积从大到小提取每一种地类对应的若干个图斑;(3)沿图斑边界做向内缓冲处理;(4)以缓冲后的图斑作为样本区,对中分辨率遥感数据进行监督分类,获取地类信息;(5)通过DEM数据计算坡度数据,并用坡度数据过滤误分类的象元;(6)过滤合并细碎图斑,得到分类结果数据。

【技术特征摘要】
1.一种土地利用数据库支持的地类信息遥感自动识别方法,包括以下步骤: (1)依据地类属性值,从土地利用数据库中获取土地利用矢量数据,并从中筛选出大类图斑; (2)依据筛选结果,按面积从大到小提取每一种地类对应的若干个图斑; (3)沿图斑边界做向内缓冲处理; (4)以缓冲后的图斑作为样本区,对中分辨率遥感数据进行监督分类,获取地类信息; (5)通过DEM数据计算坡度数据,并用坡度数据过滤误分类的象元; (...

【专利技术属性】
技术研发人员:刘顺喜尤淑撑王忠武沈均平
申请(专利权)人:中国土地勘测规划院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1