基于集成级联架构的生物显微图像分类方法技术

技术编号:8656173 阅读:195 留言:0更新日期:2013-05-01 23:53
本发明专利技术公开了一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。实验证实,在合理的拒分率范围内,此系统可显著提高生物显微镜图像分类的可靠性和准确率。

【技术实现步骤摘要】

本专利技术属于智能图像分析领域,尤其是生物显微镜图像的高可靠性分类方法,具体涉及一种。
技术介绍
真核细胞具有很多被称为细胞器的组成部件,每一个细胞器都含有一个特定的蛋白质位置,因此,他们具有不同的生化属性。对于理解细胞的功能以及构造方式以及捕捉细胞的激活行为而言,确定其蛋白质的位置是至关重要的。研究表明,蛋白质的错位和很多疾病如代谢紊乱、癌症有着紧密的联系。因此,细胞蛋白质的检测分类对于早期疾病的诊断甚至药物的疗效监测都是一个很有效的方法。目前广泛使用的亚细胞蛋白质位置检测方法是荧光显微法。近年来,有很多基于荧光显微镜图像的亚细胞蛋白质位置检测方法。以正确的细胞图像分割为基础,显型检测问题就成为了一个多类的图像分类问题,包含两个主要的步骤特征表示和分类。一般来说,大部分的基于图像的细胞结构分析使用多种图像特征的组合来表示图像,例如形态学、边缘、纹理、几何特征、矩以及小波特征。最近,图像特征描述方法的进步产生了一些“拿来即用”的特征提取方法,这些方法可以直接应用于生物图像分析领域。这里使用曲线波变换(Curvelet Transform)、灰度共生矩阵的统计特征和局部纹理特征组合的图像描述方法,得到了较好的图像分类效果。另一方面,大量的机器学习和智能计算方法已经进入到生物体图像分析领域,例如人工神经网络、支持向量机(SVM)等。这些工具已经广泛地用于荧光显微镜图像的分类以及亚细胞蛋白质的分类中。然而,生物显微镜图像具有一个显著的特点图像具有较大的类间相似性和类内相异性,这决定了使用常用的分类器难以达到很好的分类边界。此外,由于多种图像特征的组合使用,特征的维数不断增加,使得特征向量的维数超过了训练集的样本数。采用分类器集成机制(Classifier Ensemble)将解决单一分类器所存在的问题,提高分类的效果。针对特征维数问题,采用随机子空间(Random Subspace)方法可以有效地降低特征维数,同时,还可以提高集成分类器的多样性,进一步提升分类效果。以往的生物显微镜图像分类中,只把分类正确率作为唯一的评判标准,然而,在很多生物医学问题中,更为重要的是分类的结果的可靠性。例如,在癌症早期的诊断和药物药效研究中,应该将无法可靠评估和分类的案例拒绝分类,交给其他工具或专家处理,这样,可以大大降低错误分类造成的严重后果。因此,在计算机辅助诊断(Computer AidedDiagnosis)中引入拒绝分类机制,将可以大大提高系统的可靠性,使得系统误判的概率大大降低,避免由于误判所带来的风险。
技术实现思路
本专利技术目的在于提供一种基于集成级联架构的生物显微图像分类系统,解决了现有技术中图像分类效果差、系统误判概率较大等问题。为了解决现有技术中的这些问题,本专利技术提供的技术方案是:一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。优选的,所述系统为两层的集成分类器串联连接而成,所述系统后端连接人工专家系统。优选的,第一层集成分类器内构建有若干组分类专家,所述分类专家对导入的生物显微图像分类目标进行分类,并提交分类结果;每组分类专家内构建有若干个两类的支持向量机;每个支持向量机只根据生物显微图像分类目标的某种分类数据进行判别生物显微图像分类目标是否属于此类。 优选的,第一层集成分类器最终的分类结果由投票机制决定,投票结果应用拒绝分类判别函数,不满足判别条件的生物显微图像分类目标将不做分类而传递到下一层集成分类器。优选的,第二层集成分类器由若干个多层感知器集合而成,每个多层感知器设置有I个隐藏层和I个含有K个输出节点的输出层;所述隐藏层采用sigmoid函数,所述输出层采用线性函数作为激活函数;当一个待分类的生物显微图像分类目标进入时,所有的多层感知器均将对其分类,最终结果将会通过投票得到;最终的分类结果由投票机制决定,投票结果应用拒绝分类判别函数,不满足判别条件的生物显微图像分类目标将不做分类而传递到人工专家系统。优选的,所述支持向量机和多层感知器均使用随机子空间方法对训练特征向量进行随机抽取训练。优选的,所述特征向量通过选自曲线波变换、灰度共生矩阵、基于完整局部二值模式的至少一种进行特征抽取后组成特征向量。本专利技术的另一目的在于提供一种采用所述的基于集成级联架构的生物显微图像分类系统进行分类的方法,其特征在于所述方法包括先通过第一层集成分类器对生物显微图像分类目标进行分类;当第一层集成分类器无法判定生物显微图像分类目标的最终分类结果时,将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环直至最后一层集成分类器分类结束;当当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类的步骤。优选的,所述方法中拒绝分类判别机制是通过阈值作为拒绝分类的判定规则。优选的,所述方法中所述系统为两层的集成分类器串联连接而成,所述系统后端连接人工专家系统,阈值t按照式(I)确定:+ M is even_9] -1 ±ι if μ mkL1 2(I).其中,M为多层感知器的个数。本专利技术提供了一种基于集成级联架构的生物显微图像高可靠性分类方法,采用级联(Cascade)的若干层(优选两层)集成分类器的模型,在每一层分类器中加入拒绝分类评估模块,可靠性评估低于设定标准的分类对象将会被当前层拒绝分类并传递到下一层继续处理,若计算机自动无法分类的,则交由人工专家决定。本专利技术技术方案获得的级联集成分类模式的生物显微镜图像分类系统,提高了生物显微镜图像的分类精度并保证了系统分类结果的可靠性。本专利技术技术方案中生物显微镜图像可以采用多种图像特征提取方法组合行特征提取。使用的特征提取方法包括但不限于:(I)曲线波变换(Curvlet Transform):曲线波变换是最近提出的一种非自适应变换,和小波变换相比,曲线波变换具有提取图像方向性特征的能力,例如图像中的边缘。曲线波变换将生物显微图像变换到不同的频率子带(Sub-band)中,然后对各个频率子带进行特征统计,均值、方差和熵用作子带的统计特征。当每幅图像变换后具有η个子带时,将得到一个3η维度的曲线波特征向量。(2)灰度共生矩阵(Gray Level Co-occurrence Matrix)统计特征生物显微图像的全局纹理特征使用灰度共生矩阵的多个统计特征组合得到。灰度共生概率提供了 一种生成图像特征的二阶方法。(3)局部纹理特征的提取基于完整局部二值模式(Completed Local Binary Pattern,CLBP)用于提取生物显微镜图像的局部纹理特征。将提取三个通道的LBP,分别为CLBP_S,CLBP_M和CLBP_C,三个通道的特征最终生成一个3维的交叉直方图用于描述图像局部纹理特征。(4)多特征融合以上提取的多种特征将被规范化到[-1本文档来自技高网
...

【技术保护点】
一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。

【技术特征摘要】
1.一种基于集成级联架构的生物显微图像分类系统,其特征在于所述系统包括若干层的集成分类器,所述集成分类器依层串联连接形成集成级联架构,每一层集成分类器由一个具有若干个基分类器的集成分类器构成,且每一层集成分类器对生物显微图像分类目标进行分类结果评判时,在当前层无法判定的分类目标将被拒绝分类而传递到下一层,由下一层的集成分类器进行分类处理,依次循环;当所有层的集成分类器均无法对生物显微图像分类目标进行自动分类时,交由人工专家系统进行分类。2.根据权利要求1所述的基于集成级联架构的生物显微图像分类系统,其特征在于所述系统为两层的集成分类器串联连接而成,所述系统后端连接人工专家系统。3.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第一层集成分类器内构建有若干组分类专家,所述分类专家对导入的生物显微图像分类目标进行分类,并提交分类结果;每组分类专家内构建有若干个两类的支持向量机;每个支持向量机只根据生物显微图像分类目标的某种分类数据进行判别生物显微图像分类目标是否属于此类。4.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第一层集成分类器最终的分类结果由投票机制决定,投票结果应用拒绝分类判别函数,不满足判别条件的生物显微图像分类目标将不做分类而传递到下一层集成分类器。5.根据权利要求2所述的基于集成级联架构的生物显微图像分类系统,其特征在于第二层集成分类器由若干个多层感知器集合而成,每个多层感知器设置有I个隐藏层和I个含有K个输出节点的输出...

【专利技术属性】
技术研发人员:张百灵张云港
申请(专利权)人:西交利物浦大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1