用于医学图像的鲁棒分割的器官特异的增强滤波器制造技术

技术编号:8629628 阅读:213 留言:0更新日期:2013-04-26 18:35
成像器(10)和重建处理器(12)生成强度图像(14)。识别(20)并限制(24)包含目标体积的区域。分类器(30)通过增强滤波器在限制区域中的体素上进行操作以生成增强的图像,诸如这样的图像:其体素值表示每个体素在所述目标体积中的概率。分割处理器(40)对所述增强的图像进行分割以识别所述目标区域的表面,从而生成分割图像,所述分割图像显示在监视器(52)上或者用在辐射治疗计划系统(54)中。

【技术实现步骤摘要】
【国外来华专利技术】用于医学图像的鲁棒分割的器官特异的增强滤波器
本申请涉及医学成像领域。本申请适于与医学图像分割相结合并且将具体参考其加以描述。
技术介绍
在医学图像中,分割是这样一种处理:通过分割,清晰地识别一个或多个器官或组织之间的边界。准确地分割医学图像对于许多临床应用而言是至关重要的。然而,一些器官或组织难以与邻近的器官或组织相区分。例如,在辐射治疗中,将相对大的辐射剂量递送至例如为肿瘤的目标体积是有利的。但是,目标体积通常紧密邻近并且甚至邻接高危险器官,高的或者甚至中等剂量的辐射会损伤所述高危险器官。当规划射束轨迹时,准确地知道目标体积与高危险器官间的边界是重要的。未能辐照肿瘤的所有部分会导致快速的复发。即使以意图针对肿瘤的高剂量来辐照危险器官的一部分,也能够造成有害的身体和健康后果。已经提出了用于自动分割患者的灰度医学图像的许多自动分割技术。尽管这些自动分割技术被成功应用于许多应用,但因为由针对特定组织类型的标准医学成像模态提供不充分的区分信息,自动分割通常是不可行的。一种自动分割技术是基于模型的分割。在基于模型的分割中,从计算机存储器中检索待分割的指定器官的模型或轮廓。能够被识别的待分割的器官的表面上的特征与模型的相应特征相关联。之后,将模型缩放、旋转、定位以及变形,从而使得模型与图像叠加,其中,能识别图像与模型特征直接彼此叠加。不能够与周围组织区分的器官的表面的区域被假设为由模型定义的表面,该模型已经匹配能够被区分的图像的特征。因为这样的假设不总是正确的,因此希望得到分割准确性的更好的确定性。
技术实现思路
本申请描述了一种专用的器官特异的特征增强技术方案,其旨在提高医学图像的分割准确性,并且具体而言,使用基于3D模型的方法。根据一个方面,提供了一种用于分割医学图像的设备。存储器存储强度医学图像。一个或多个处理器被编程以基于特征的集合(pool)利用增强滤波器在所述强度图像上进行操作以生成增强的图像,所述增强的图像比所述强度图像更好地将目标体积与邻接组织区分开来。存储器存储所述增强的图像。根据另一方面,提供了一种分割医学图像的方法。识别包含选定目标体积的强度图像的区域。基于用于从邻接组织生成所选目标体积的特征的集合,利用增强滤波器在识别的强度图像区域上进行操作,以生成增强的图像。一个优点在于更好的分割准确性。另一优点在于基于分割图像的临床应用的提高的可靠性。另一优点在于改善的健康保健。本领域技术人员通过阅读和理解下面详细的描述将认识到本专利技术进一步优点。附图说明本专利技术可以采取各种部件和部件布置以及各种步骤和步骤安排的形式。附图仅用于图示说明优选实施例,而不应将其解释为限制本专利技术。图1概要图示了用于分割医学图像的系统;图2是左颌下腺的2D、强度图像;图3是在利用本技术的图像增强之后,与图2具有相同比例和相同位置的左颌下腺的相同切片图像;图4描绘了标记了颌下腺的表面或边界的增强的切片图像;图5是用于生成用于与图1系统一起使用的增强或分类滤波器技术的概要图示;图6是左腮腺及周围生物学结构的2D、强度切片;图7是在根据本技术的增强之后,与图6具有在图像中相同比例和位置的相同感兴趣体积的切片;以及图8是分割医学图像的方法的流程图。具体实施方式参考图1,成像系统10执行对受试者的检查,成像系统10诸如是磁共振成像系统、CT扫描器、正电子发射断层摄影(PET)扫描器、单光子发射计算机断层摄影(SPECT)扫描器、超声扫描器、辐射照相成像系统、其他成像系统以及这些的结合。重建处理器12将来自成像扫描器10的数据重建成强度或灰度图像14,强度或灰度图像14被存储在缓存器或存储器16中。在CT扫描中,例如,灰度能够表示由每个体素吸收(或发射)的辐射的强度或量。在PET图像中,作为另一范例,强度图像的灰度能够表示发生在每个体素中的放射性同位素事件的强度或量。存储器16可以处在与所述扫描器相关联的工作站中、处在中心医院数据库中等。目标体积识别单元20在强度或灰度图像中识别目标体积。在一个实施例中,所述目标体积识别单元包括显示所述强度图像的切片的视频监视器,并且临床医师使用用户接口装置22指示目标体积的位置。在另一实施例中,目标体积识别装置包括常规的3D模型分割例程,所述常规的3D模型分割例程在所述强度图像中识别目标体积并将3D模型与之匹配。体积限制单元24界定了包含要以本技术分割的目标体积的全部或选定部分的3D图像的限制部分。在一个实施例中,由临床医师使用用户接口22手动地界定限制的体积。在另一实施例中,在三个维度上由足以确保包含感兴趣体积或其选定部分的量来扩大基于模型的或其他自动的分割边界。例如,自动分割能够扩大固定的百分比,例如,25%。在另一实施例中,扩大的程度可以是强度图像分割准确性的确定性程度的函数。分类器或图像增强单元30利用从分类或增强滤波器存储器32检索的分类或增强滤波器在限制的体积上进行操作。滤波器存储器32被预加载针对多个目标体积中的每个的适当的滤波器。将所选滤波器应用于所述限制的体积包括基于特征的大的集合将所述限制的体积的每个体素进行分类,所述特征的大的集合包括相对位置特征、纹理特征、强度特征、邻接体素的特征等。这样的特征包括,但不限于,关于所选目标体积的形状、所选目标体积的结构和相对结构特征、在每个体素的邻域中的强度梯度、强度变化和偏差等的先验信息。在数学上,所述滤波器的应用可以包括考虑体素位置,应用一阶或二阶导数、二阶或更高阶张量、拉普拉斯变换、高斯函数,计算海塞(Hessian)矩阵的特征值,以及利用其他一阶、二阶和更高阶的数学运算。应用所述滤波器导致得到增强的图像。在一个实施例中,所述增强的图像的体素值不再表示强度,而是表示每个体素被分类为或者不被分类为所述目标体积成员的概率,例如,每个体素处在待分割的目标器官或肿瘤中的概率。图2图示了CT强度图像的限制的体积的切片,在所述CT强度图像中,所述目标体积为左颌下腺。在图2的范例中,明亮区域图示了骨骼(更高辐射吸收),并且多种灰度表示颌下腺以及多种周围组织和器官。图3图示了增强的图像34的一个实施例,增强的图像34为与图2中的颌下腺具有相同位置和相同比例的颌下腺的相同切片的增强的图像。在所述增强的图像中,灰度表示由所述分类器通过应用所述滤波器确定的,每个体素为所选目标体积的成员的概率,更亮的体素指示了更高的概率并且更暗的体素指示更低的概率。应当注意到,图3识别的颌下腺的边缘比图2的清晰很多。分割处理器40分割所述增强的图像以识别所述目标体积的外表面,其在图4中被图示为42。在一个实施例中,分割处理器40应用自动分割技术,具体地为基于模型的分割技术。分割处理器40从模型存储器44中选择与所选目标体积相对应的模型。分割处理器40通过平移、旋转以及缩放分割模型来匹配分割模型。所述分割处理器还可以在分割模型上执行非线性运算以将它更为准确地与在所述增强的图像中识别的目标体积对齐。例如,所述算法可以令在所述增强的图像中和模型中的类似点彼此吸引。任选地,临床医师可以使用单元46调节分割模型42,单元46应用手动成形工具。此外或备选地,强度图像分割单元48将匹配分割模型应用于强度图像14以生成分割的强度图像。最终分割的图像被存储在存储器49中,存储器49可以与本文档来自技高网...
用于医学图像的鲁棒分割的器官特异的增强滤波器

【技术保护点】

【技术特征摘要】
【国外来华专利技术】2010.07.30 US 61/369,2661.一种用于分割医学图像的设备,包括:存储器(16),其存储待分割的医学强度图像;一个或多个处理器(30),其被编程用于:向所述强度图像应用预分割算法以估计目标体积的边界,并扩大所述估计的边界以确保所述目标体积包括在所述扩大的估计的边界中,由此界定了所述强度图像的限制的体积;基于特征的集合利用增强滤波器在所述强度图像的所述限制的体积上进行操作以生成增强的图像,所述增强的图像将所述目标体积与邻接组织相区分,存储器(34),其用于存储所述增强的图像。2.根据权利要求1所述的设备,其中,所述增强的图像为包括体素的3D阵列的3D图像,每个体素的值表示每个体素属于所述目标体积的概率。3.根据权利要求1-2中的任一项所述的设备,还包括:增强滤波器存储器(32),其用于存储与多个潜在目标体积中的每个相对应的多个增强滤波器。4.根据权利要求1-2中的任一项所述的设备,还包括如下中的至少一项:监视器(52),其显示所述增强的图像;辐射治疗计划系统(54),其使用所述增强的图像来生成辐射治疗计划;成像装置(10)和重建处理器(12),所述成像装置执行对患者的检查并且重建处理器根据由所述成像装置生成的数据重建所述强度图像。5.一种分割医学图像的方法,包括:识别待分割的强度图像的区域,所述图像包含选定目标体积,其中,所述识别包括:向所述强度图像应用预分割算法以估计所述目标体积的边界,以及扩大所述估计的边界以确保所述目标体积包括在所述扩大的估计的边界中,由此界定了所述强度图像的限制的体积;基于用于将所述选定目标体积与邻接组织相区分的特征的集合,利用增强滤波器在所述强度图像的所述限制的体积上进行操作以生成增强的图像。6.根据权利要求5所述的方法,其中,所述增强的图像为包括体素的3D阵列的3D图像,每个体素的值表示每个体素属于所述目标体积的概率。7.根据权利要求5-6中的任一项所述的方法,还包括:选择多个所述增强滤波器中的一个,其对应...

【专利技术属性】
技术研发人员:V·佩卡尔A·A·卡齐
申请(专利权)人:皇家飞利浦电子股份有限公司大学健康网络
类型:
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1