本发明专利技术公开了一种基于复合Q因子基算法的轴承故障诊断方法。本发明专利技术将轴承故障非平稳信号表示成高共振成分(轴承正常部分旋转引起的随机振动及强噪声)和低共振成分(故障冲击成分)的混合。高共振成分的Q因子高,低共振成分的Q因子低,进而依据轴承故障信号的不同结构成分的振荡程度自适应地构造复合Q因子基(高Q因子基及低Q因子基)对故障信号进行处理,用高Q因子基匹配出其高共振成分(轴承正常部分旋转引起的随机振动及强噪声),利用低Q因子基匹配出其低共振成分(故障冲击成分),继而对低共振成分(冲击信号成分)解调提取轴承故障非平稳信号的故障信息进行故障诊断。
【技术实现步骤摘要】
本专利技术涉及一种轴承故障诊断方法,特别涉及一种基于复合Q因子基算法的轴承故障诊断方法。
技术介绍
轴承是旋转机械设备的重要组成部件,对其运转状态的检测和故障诊断具有很重要的意义。轴承的故障振动信号是一类典型的非平稳信号,较平稳信号而言,其分布参数或者分布规律随时间发生变化,工程实际中所接触的信号往往也是非平稳信号,所以此类信号的研究对于工程应用具有极其重要的意义。在传统的对信号进行分析的方法中,基本上都是基于频率不同对信号进行分析,例如经典的小波变换,Hilbert-Huang变换等,然而对于复杂的非平稳信号而言,其是由持续振荡成分(高共振成分)和非持续振荡的瞬态成分(低共振成分)混合而成的。图1说明了信号共振的概念(其中,Q因子定义为中心频率f。和它带宽的比值,即Q=f;/BW),脉冲I (高频信号)和脉冲3 (低频信号)只包含一个周期的正弦波,我们将它们定义为低共振信号(Q因子值为1. 15),因为它们没有表现持续振荡的状态,脉冲2 (高频信号)和脉冲4(低频信号)包含五个周期的正弦波(Q因子值为4. 6),我们将它们定义为高共振信号,因为它们表现持续振荡的状态。即高共振信号既可以是高频信号,也可以是低频信号;低共振成分既可以是低频信号,也可以是高频信号,二者的区别不在于频率的不同,而在于它们的持续振荡程度的不同。轴承故障振动信号结构成分复杂,且具有大量噪声和瞬态特征,属于上述的非平稳信号,其高共振成分和低共振成分存在频率重叠,利用基于频率不同的算法往往难以实现不同结构成分分离,进而提取故障特征。
技术实现思路
为了解决传统的基于频率的信号分析方法在轴承故障诊断中的上述技术问题,本专利技术提供了一种基于复合Q因子基的轴承故障诊断方法。本专利技术解决上述技术问题的技术方案包括利用Matlab编程构造合适的复合Q因子基、对轴承故障非平稳信号进行基于复合Q因子基的稀疏分解、提取故障冲击分量信号、解调得到故障特征等步骤。其中分解算法包括以下步骤(I)根据待分析信号的结构特点自适应地构造复合Q因子基;(2)将原始信号x(t)在复合Q因子基上进行分解;(3)利用相应的Q因子基提取出故障冲击信号成分。(4)对提取出的故障冲击信号成分进行解调分析得到故障特征。轴承振动信号主要由轴承的旋转运动引起,故障轴承振动信号中还会出现冲击和瞬态振动特征,其由高共振成分(轴承正常部分旋转引起的随机振动及强噪声)和低共振成分(故障冲击成分)组成,针对此特点,选择由高Q因子基及低Q因子基组成复合Q因子基,利用高Q因子基匹配出其高共振成分,利用低Q因子基匹配出其低共振成分。有效表示高共振成分和低共振成分需要构造两组合适的基,高共振成分的有效表示需要一组全是包含高Q因子的基函数,这样的基可以通过对单个高Q因子的脉冲进行平移和时间尺度变换得到,在这组基中,所有的基函数的Q因子都相同,类似地,低共振成分的有效表示需要一组全是包含低Q因子的基函数。即为了对轴承故障非平稳信号进行有效的分析,需要构造一组能够有效匹配其持续振荡成分(高共振成分)的高Q因子基和一组能够匹配其非持续振荡的瞬态成分(低共振成分)的低Q因子基。本专利技术中我们利用复合Q因子的小波变换产生相应的高Q因子基及低Q因子基。利用复合Q因子的小波变换设计构造相应的高Q因子基及低Q因子基。复合Q因子的小波变换利用一系列两通道滤波库,一个高共振成分滤波库,一个低共振成分滤波库,通过Matlab编程实现滤波库的构造;对非平稳信号进行处理,其中Q= (2-β)/β, Γ=β/(1-α),α , β分别是低通滤波库和高通滤波库的尺度参数,r是滤波库的冗余度系数;选取调整滤波器的尺度参数α,β,其中α取值范围为0_1,β取值范围为0_1,使得匹配提取出的低共振冲击成分的峭度指标和脉冲指标最大,从而设计构造出相应的高Q因子基及低Q因子基,匹配提取出非平稳信号的高共振成分和低共振成分。本专利技术的技术效果在于将轴承故障非平稳信号表示成高共振成分(轴承正常部分旋转引起的随机振动及强噪声)和低共振成分(故障冲击成分)的混合。高共振成分的Q因子高,低共振成分的Q因子低,进而依据轴承故障信号的不同结构成分的振荡程度自适应地构造复合Q因子基(高Q因子基及低Q因子基)对故障信号进行处理,用高Q因子基匹配出其高共振成分(轴承正常部分旋转引起的随机振动及强噪声),利用低Q因子基匹配出其低共振成分(故障冲击成分),继而对低共振成分(冲击信号成分)解调提取轴承故障非平稳信号的故障信息进行故障诊断。附图说明下面结合附图和具体实施方式对本专利技术作进一步说明。 图1是本专利技术的高共振信号及低共振信号的诠释图。图2是本专利技术构造的高低Q因子基。图3是本专利技术的基于复合Q因子基算法的轴承故障诊断方法整体流程图。图4是本专利技术中模拟的存在外圈点蚀故障的轴承振动信号的时域波形及频谱图。图5是本专利技术中对外圈点蚀故障提取出冲击成分的时域图及频谱图。图6是本专利技术中对外圈点蚀故障冲击分量进行解调处理得到的解调谱。具体实施例方式图1是本专利技术的高共振信号及低共振信号的诠释图。说明了信号共振的概念,脉冲I (高频信号)和脉冲3 (低频信号)只包含一个周期的正弦波,我们将它们定义为低共振信号(Q因子值为1. 15),因为它们没有表现持续振荡的状态,脉冲2 (高频信号)和脉冲4(低频信号)包含五个周期的正弦波(Q因子值为4. 6),我们将它们定义为高共振信号,因为它们表现持续振荡的状态。利用复合Q因子的小波变换产生相应的高Q因子基及低Q因子基。复合Q因子的小波变换利用一系列两通道滤波库(一个高共振成分滤波库,一个低共振成分滤波库)对非平稳信号进行处理,根据所分析信号的特征,通过选取调整滤波器的尺度参数α,β,使得匹配提取出的低共振冲击成分的峭度指标和脉冲指标最大(峭度指标和脉冲指标,均能反映信号中冲击能量的大小。其特征值越大,说明故障信息越突出,提取的冲击性信号越明显),从而设计构造出相应的高Q因子基及低Q因子基。 Γ=β / (l-α )Q= (2- β ) / β在本专利技术所处理的轴承外圈故障信号中,当选取Ct1=O. 833, β ρΟ. 5 ((^=3, 1^=3)和Ci1=O. 667,β !=1 (Q2=l,r2=3)时,提取得到的低共振冲击成分的峭度指标和脉冲指标最大(分别为38. 6944和45. 5503,原始信号的峭度指标和脉冲指标仅分别为11. 3701和10. 9185),而α,β选取其它值时,提取的低共振成分的峭度指标和脉冲指标都分别比38. 6944和45. 5503小,从而设计构造相应地高Q因子基(Q=3,r=3)和低Q因子基(Q=l, r=3)对待分析信号进行稀疏分解,匹配提取出轴承外圈故障非平稳信号的高共振成分和低共振成分。图2是本专利技术构造的高低Q因子基(高Q因子基值为3,低Q因子基值为I),从图2可以看出,高Q因子基及低Q因子基的持续振荡程度不一样,从而可以利用复合Q因子的小波变换,构造相应的高Q因子基及低Q因子基,自适应的提取出信号中的低共振成分(故障冲击成分)。图3为本专利技术的基于复合Q因子基算法的轴承故障诊断方法整体流程图。下面结合流程图对基于复合Q因子基算法的轴承故障诊断方法的原理进行详细说明。(I)利用加速度振动传感器对本文档来自技高网...
【技术保护点】
一种基于复合Q因子基算法的轴承故障诊断方法,包括以下步骤:(1)采集轴承故障振动信号作为待分析信号;(2)对待分析信号进行复合Q因子基算法的稀疏分解,得到高共振成分即轴承正常部分旋转引起的随机振动及强噪声和低共振成分即故障冲击成分;(3)对低共振成分进行解调处理得到故障特征。
【技术特征摘要】
【专利技术属性】
技术研发人员:崔玲丽,莫代一,邬娜,王婧,吴春光,
申请(专利权)人:北京工业大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。