基于分散搜索算法的停车场PEV充放电优化调度方法技术

技术编号:8453330 阅读:313 留言:0更新日期:2013-03-21 18:27
一种基于分散搜索算法的停车场PEV充放电优化调度方法:S1建立收益模型;S2采用分散搜索算法优化调度:S2-1编码;S2-2初始化种群;S2-3替代初始化种群;S2-4降序排列;S2-5建立初始参考集;S2-6有新的解转到步骤S2-7;S2-7生成子集;S2-8标识新解;S2-9判断子集是否为空;S2-10选择子集s;S2-11生成新解xs;S2-12得到改进解xs’;S2-13目标函数值好于最差的解执行S2-14;S2-14替换最差解;S2-15设置新解标识;S2-16从子集中删除s;S2-17有新解转到S2-6,无则结束。本发明专利技术简单可行有效地优化,实现“低买高卖”,最大限度地获得收益。

【技术实现步骤摘要】

本专利技术涉及一种停车场PEV充放电优化调度方法,尤其是涉及一种基于分散搜索算法的停车场PEV充放电优化调度方法
技术介绍
可入网电动汽车(Plug-1n electric vehicle, PEV)以电能为动力,具有清洁、高效、环保等特点,同时也是智能电网的重要组成部分。PEV的动力电池可作为电网中移动的分布式储能单元,在受控状态下,可实现与电网的能量、信息双向互动。因此,动力电池不仅是PEV的动力源,也是重要的移动储能介质。当动力电池需要充电时,电能从电网流向汽车;当汽车暂停使用时,也可以把车载电池中的电能反送给电网系统。PEV充放电模式的应用,是电动汽车能源供给体系中的重要形式之一,也是智能电网建设的重要内容。目前,停车场PEV集中充放电的模型已经开始得到初步研究。但是,已有的研究大多集中于宏观层面的充放电调度与优化,如考虑了电动汽车代理商的双层优化模型,考虑日峰荷和负荷波动最小的优化模型,考虑PEV有序用电的数学模型等。而在分时电价的背景下,对某个确定的PEV充放电行为的调度模型与方法,却是研究的空白。对PEV充放电行为的优化调度问题属于组合优化问题,且问题的解空间巨大,常规的数值计算方法难以在有限时间得到满意的优化解。因此,寻找快速有效的调度优化算法,也成为当前研究的热点和难点之一;而智能优化算法在解决大规模问题时的简单高效,使其更适合于求解该问题。
技术实现思路
本专利技术所要解决的技术问题,就是提供一种基于分散搜索算法的停车场PEV充放电优化调度方法,以分时电价为背景,针对停车场内PEV集中充放电的收益模型,建立了 PEV充放电行为的调度模型,进行快速有效的优化调度。解决上述技术问题,本专利技术采用的技术方案如下一种基于分散搜索算法的停车场PEV充放电优化调度方法,包括以下步骤SI建立停车场PEV充放电收益模型「 ^1\1= M. - Y C.1 Lu yVMaximize沖TS'卿(I)Subjectto dV = TOUjHBaivml - SOC*js DTS1^Q = muJ *(SOC*BCL, -BCdvailje CTS,c(3)其中,TOUj表示时刻j的实时电价;M4ax表示车辆i电池的最大容量WGrarf表示车辆i电池的当前可用容量和略分别表示电池的充电效率和放电效率;Α \和DTi分别为车辆i的到达时间和离开时间。DTSi和CTSi分别表示车辆i的放电时间集和充电时间集。式(I)表示调度指标为车辆i的收益,即充放电费用差;式(2)表示车辆i在时刻j的放电收益,式⑶表示车辆i在时刻j的充电成本;S2采用分散搜索算法,优化停车场PEV充放电调度,定义算法操作的配置如下S2-1编码用两位二进制数串来代表任意时间间隔内PEV的充放电00_充电, 11-放电,01、10_保持(即既不充电又不放电);考虑一天中24个时间间隔,每个解的编码长度为2*24=48 ;另外,在车辆i的到达时刻ATi和离开时刻DTi之外时间的充放电是没有意义的,即子串要定义成01或10;S2-2初始化种群,选择一个整数作为群体的规模参数,随机生成解空间该整数个初始个体作为初始群体,代表问题的一些可能解,该整数取10,随机产生10个解;S2-3对S2-2中产生的初始解按分时电价进行降序排列,对于停车场中的每辆 PEV,都在电价最高时进行放电操作,在电价最低时进行充电操作,每辆PEV只进行一次充放电;将改进后的解放入初始种群中替代初始化的种群;S2-4将改进后种群中的解按照目标函数值进行降序排列;S2-5建立初始参考集RefSet=RefSetl U RefSet2,包括两个子集,具有Id1个高质量解的子集Refsetl和具有b2个较好多样性的子集Refset2 ;在本分散搜索解算法中,将参考集的大小b( = bi+b2)设为5,Id1为3,b2为2 ;首先从P中选择3个目标函数值最好的解放入参考集中建立RefSetl,然后通过计算解之间的距离选择多样性解;两个解之间的距离为两个解编码不同的位的个数;计算目前不在参考集中的其他初始解,对于在P-RefSet集合中的解x计算其与每一个在RefSet集合中的解y之间的距离(Ii (x,y),并选择出min Wi (x,y)}其中i取值从I到目前参考集中的解个数,从这些最小值中选择一个产生最大距离的解,将其放入RefSet2 ; 重复这个过程直到I RefSet2 | =2,并记录有新解产生。S2-6判断是否有新的解生成,如果有转到步骤S2-7开始执行,若没有则转到 S2-9 ;S2-7按照子集产生方法生成子集,S2-7-1)基于参考集,构建子集,采用四种类型的子集二元组、三元组、四元组及包含最好5个元素的子集;S2-7-2) 二元组,参考集中任意两个解构成的子集;S2-7-3)三元组基于二元组,通过增加一个目前不在该二元组的目标函数值最好的解进行构建;S2-7-4)四元组基于三元组,通过增加一个目前不在该三元组的目标函数值最好的解进行构建;S2-7-5)包含最好的5个目标函数值最优的解;S2-8标识没有新解生成;S2-9判断子集是否为空,当子集不为空时,转到S2-10开始执行;当子集为空时结束S2-10 选择子集 s ;S2-11应用解组合方法,针对子集中的解,计算不同解在到达和离开时间范围内每个小时充放电状态对整个目标函数的影响,选择影响因子最大的充放电状态作为每个小时最终的充放电状态,组合成为一个新解; 最后对到达和离开时间范围充放电的情况进行计算,保证放电过程中动力电池的5剩余电量维持在SOC以上,一旦在放电过程中电能状态达到S0C,放电过程立即停止;对组合后的解进行计算,从收益最小的部分进行可行化,直到满足约束要求,生成新解xs ;S2-12将解Xs按分时电价进行降序排列,对于停车场中的每辆PEV,都在电价最高时进行放电操作,在电价最低时进行充电操作,每辆PEV只进行一次充放电;得到一个新的改进解Xs’ ;S2-13如果Xs’不在RefSet中,且Xs’的目标函数值好于在RefSet中目标函数值最差的解那么执行S2-14 ;S2-14将Xs’加入到RefSet中替换RefSet中的最差解;S2-15设置有新解产生的标识;S2-16从子集中删除S,转到S2-9执行。S2-17如果有新解产生转到S2-6执行,如果没有结束。有益效果本专利技术提供了一种基于分散搜索算法的停车场PEV充放电优化调度方法,方法简单可行,能有效地对停车场内PEV充放电行为进行优化调度,实现“低价买进、高价卖出”,进而最大限度地获得收益。附图说明图1为本专利技术的详细流程图; 图2为实施例的最优解调度图。具体实施方式如图1所示,本专利技术的基于分散搜索算法的停车场PEV充放电优化调度方法实施例,包括以下步骤SI建立停车场PEV充放电收益模型停车场内PEV进行集中充放电的收益模型可描述如下停车场中有若干辆PEV,每辆PEV在到达时刻和离开时刻之间可进行多次充放电。另外,基于分时电价理论,一天24 个时间间隔的电价有所差别。调度目标是确定每辆PEV的充电时刻和放电时刻,实现“低价买进、高价卖出”,使得在满足时间约束的前提下每辆PEV的收益最大。通常,每辆PEV在离开停车场之前,其动力电池要保持一定本文档来自技高网...

【技术保护点】
一种基于分散搜索算法的停车场PEV充放电优化调度方法,包括以下步骤:S1建立停车场PEV充放电收益模型:MaximizePMi=Σj∈DTSiDij-Σj∈CTSiCij---(1)SubjecttoDij=TOUj*(BCAvaili-SOC*BCmaxi)*EDij∈DTSi---(2)Cij=TOUj*(SOC*BCmaxi-BCAvaili)*1ECij∈CTSi---(3)其中,TOUj表示时刻j的实时电价;表示车辆i电池的最大容量;表示车辆i电池的当前可用容量;和分别表示电池的充电效率和放电效率;ATi和DTi分别为车辆i的到达时间和离开时间;DTSi和CTSi分别表示车辆i的放电时间集和充电时间集;式(1)表示调度指标为车辆i的收益,即充放电费用差;式(2)表示车辆i在时刻j的放电收益,式(3)表示车辆i在时刻j的充电成本;S2采用分散搜索算法,优化停车场PEV充放电调度,包括以下子步骤:S2?1编码:用两位二进制数串来代表任意时间间隔内PEV的充放电:00?充电,11?放电,01、10?保持;考虑一天中24个时间间隔,每个解的编码长度为2*24=48;另外,在车辆i的到达时刻ATi和离开时刻DTi之外时间的充放电是没有意义的,即子串要定义成01或10;S2?2初始化种群:选择一个整数作为群体的规模参数,随机生成解空间该整数个初始个体作为初始群体,代表问题的一些可能解;S2?3对S2?2中产生的初始解按分时电价进行降序排列,对于停车场中的每辆PEV,都在电价最高时进行放电操作,在电价最低时进行充电操作,每辆PEV只进行一次充放电;将改进后的解放入初始种群中替代初始化的种群;S2?4将改进后种群中的解按照目标函数值进行降序排列;S2?5建立初始参考集RefSet=RefSet1∪RefSet2,包括两个子集,具有b1个高质量解的子集Refset1和具有b2个较好多样性的子集Refset2;在本分散搜索解算法中,将等于b1+b2的参考集的大小b设为5,b1为3,b2为2;首先从P 中选择3个目标函数值最好的解放入参考集中建立RefSet1,然后通过计算解之间的距离选择多样性解;两个解之间的距离为两个解编码不同的位的个数;计算目前不在参考集中的其他初始解,对于在P?RefSet集合中的解x计算其与每一个在RefSet集合中的解y之间的距离di(x,y),并选择出min{di(x,y)}其中i取值从1到目前参考集中的解个数,从这些最小值中选择一个产生最大距离的解,将其放入RefSet2;重复这个过程直到|RefSet2|=2,并记录有新解产生;S2?6判断是否有新的解生成,如果有转到步骤S2?7开始执行,若没有则转到S2?9;S2?7按照子集产生方法生成子集;S2?8标识没有新解生成;S2?9判断子集是否为空,当子集不为空时,转到S2?10开始执行;当子集为空时结束;S2?10选择子集s;S2?11应用解组合方法,针对子集中的解,计算不同解在到达和离开时间范围内每个小时充放电状态对整个目标函数的影响,选择影响因子最大的充放电状态作为每个小时最终的充放电状态,组合成为一个新解;最后对到达和离开时间范围充放电的情况进行计算,保证放电过程中动力电池的剩余电量维持在SOC以上,一旦在放电过程中电能状态达到SOC,放电过程立即停止;对组合后的解进行计算,从收益最小的部分进行可行化,直到满足约束要求,生成新解xs;S2?12将新解xs按分时电价进行降序排列,对于停车场中的每辆PEV,都在电价最高时进行放电操作,在电价最低时进行充电操作,每辆PEV只进行一次充放电;得到一个新的改进解xs’;S2?13如果改进解xs’不在RefSet中,且xs’的目标函数值好于在RefSet中目标函数值最差的解那么执行S2?14;S2?14将xs’加入到RefSet中替换RefSet中的最差解;S2?15设置有新解产生的标识;S2?16从子集中删除s,转到S2?9执行;S2?17如果有新解产生转到S2?6执行,如果没有结束。FDA00002362749000014.jpg,FDA00002362749000015.jpg,FDA00002362749000016.jpg,FDA00002362749000017.jpg...

【技术特征摘要】

【专利技术属性】
技术研发人员:隋宇朱浩骏丁伯剑曲毅章晋龙
申请(专利权)人:广东电网公司电网规划研究中心
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1