本发明专利技术公开了一种基于分布式处理和SVM分类器的室外海量物体识别方案,该方案预先对城市版图进行区域划分,在每个区域中对各场景进行图像采集,并训练区域的词典和场景的SVM分类器;识别时,终端将拍摄的图像和当前GPS信息打包发送给调度处理集群;调度处理集群根据GPS信息判断与待识别图像相关的词典和分类器是否已经加载到计算节点,如果没有,再确定加载范围,将范围内的词典和分类器分摊加载到计算节点;计算节点利用词典得到待识别图像的统计直方图向量,再用SVM进行打分;所有计算节点打分最高的SVM对应的场景最后识别结果,反馈给终端。使用本发明专利技术能够实现智能终端的大规模图像识别和检索,而且减少了数据运算量,提高了图像识别和检索的速度。
【技术实现步骤摘要】
本专利技术属于移动增强现实
,具体涉及一种基于分布式处理和SVM分类器的室外海量物体识别方法和系统。
技术介绍
在近几年,将图像内容表示为特定“视觉单词”出现次数直方图的Bag-of-words模型,展示了其在图像内容分类方面的强大优势,在通过SVM分类器进行学习,能实现高精度的图像识别。物体识别的本质就是建立一个能够识别出图像中感兴趣物体类别的计算系统,在现实生活中有着广泛的应用需求,具有相当高的应用价值和研究意义。随着互联网的发展,人类正在步入一个信息化的社会,互联网已经成为人类发布、获取、交换信息的重要平台。互联网上信息量的指数级增长,使得如何让用户能够快速准确地在海量的数据中找到其所需信息成为了一个重要的课题。近些年来,随着数字摄影和存储设备的进步和普及,室外的图像数量在互联网上的飞速增长,也已经达到成千上万了。如 何有效的利用这些数据信息,给当前处于相同位置的用户提供这些已有的信息,是商业界和学术界的一个重要研究方向。然而,随着图像库规模的极大增长,要保证图像搜索的实时性,相应的数据库索引技术和图像检索技术也必须做相应的调整或加速。同时计算机软、硬件技术的迅猛发展,为增强现实技术走出室内应用进而支持复杂的分析、决策和管理打下了坚实的基础。一些移动终端设备(像PDA、智能手机等)的功能也越来越丰富,并且拥有了嵌入式操作系统、触摸屏、GPS定位、视频摄像头等功能,同时也具备了较强的计算和处理能力。这些功能的集成为开发基于移动终端的增强现实系统奠定了基础。据有关资料,截止到2010年我国移动电话用户可达7. 4亿,其中拥有智能手机的用户占了相当的比重,智能手机作为增强现实的应用平台将具有很大的应用潜力。3G网的逐步开通、运行,意味着移动增值业务全新时代的开始,增强现实技术和LBS相结合可以实现信息的实时交互、三维动态显示,可使人机界面更加友好和具有智能性。基于上述分析,结合具有摄像头的终端以及基于视觉单词的图像识别技术,可以将海量物体的在线识别变为可能,而且结合分布式处理技术可以大大缩短在线识别时间。
技术实现思路
有鉴于此,本专利技术提供一种基于分布式处理和SVM分类器的室外海量物体识别方案,该方案将分布式处理技术与计算机视觉技术相结合使智能终端具备大规模图像的识别功能,实现智能终端的大规模图像识别和检索,进而实现移动增强现实的多种应用。而且,本专利技术利用GPS信息缩小数据匹配范围,减少了数据运算量,从而进一步提高了图像识别和检索的速度,实现了在线实时的室外海量物体识别。该方案是这样实现的一种基于分布式处理和SVM分类器的室外海量物体识别方法,该方法包括将室外建筑整体区划分为多个矩形的区域;针对每个区域,选取多个场景,为每个场景采集多幅图像,从每幅图像中提取特征点并转化为描述符,利用聚类算法对一个区域内所有场景的所有描述符进行聚类,每个聚类中心作为一个单词,一个区域内的所有单词形成一个词典;每个区域采用区域中心处GPS信息和四个角的GPS信息表示区域位置,存储带区域位置的词典到样本文件系统中;以区域为单位,对区域内每个场景所有图像的描述符进行训练,形成一个支持向量机SVM分类器,一个场景对应一个分类器;将区域位置、SVM分类器和场景信息对应存储到样本文件系统中;所述的识别方法包括如下步骤步骤I :终端采集当前场景的待识别图像以及GPS信息; 步骤2 :提取所述待识别图像的局部特征,并转化为描述符特征向量;步骤3 :将待识别图像的GPS信息以及描述符特征向量打包成一个描述符文件,发送给分布式处理系统;步骤4:分布式处理系统中设有调度处理集群、多个计算节点和所述样本文件系统;调度处理集群接收到所述描述符文件后,为所述终端建立一个新的匹配任务A,从该描述符文件中提取GPS信息作为匹配任务A的标识,查询当前正在处理的匹配任务中是否存在与匹配任务A相同或相似的匹配任务,如果是,说明已经将与待识别图像相关的词典和SVM分类器加载到各计算节点中,则将描述符文件发送给每个计算节点,然后执行步骤6 ;否则,执行步骤5;所述相同或相似的匹配任务的查询标准为如果当前正在处理的匹配任务对应的GPS信息与待识别图像的GPS信息一致或者相差一个预设阈值,则认为存在相同的匹配任务;步骤5 :调度处理集群为匹配任务A加载相关的词典和SVM分类器以待识别图像的GPS信息为圆心,按照预先设定的筛选半径确定一个圆形,根据区域位置从样本文件系统中筛选出与该圆形相交的区域,将筛选出区域的词典和区域内所有SVM分类器分摊加载到各个计算节点中;同时,调度处理集群还将描述符文件发送给每个计算节点;步骤6 :每个计算节点从描述符文件中解析出待匹配描述符特征向量;针对每个区域,利用距离关系查找每个待匹配描述符特征向量在词典中对应的单词,并对每个单词的出现频率进行统计,得到统计直方图向量;再将统计直方图向量输入该区域对应所有SVM分类器进行打分,找出分数最高的SVM分类器;将各区域的匹配结果汇总到调度处理集群;步骤7 :调度处理集群统计各个计算节点的匹配结果,选出打分最高的SVM分类器,输出该SVM分类器对应的场景信息给终端。当所述区域的划分为将室外建筑整体区划分为互不重叠的多个小区域,每4个上下左右相邻的小区域构成一个所述区域时,步骤5中,所述根据区域位置从样本文件系统中筛选出与该圆形相交的区域为仅筛选出包含所述圆形的区域。本专利技术还提供了一种基于分布式处理和SVM分类器的室外海量物体识别系统,其特征在于,包括分布式处理系统、无线网络和具有图像采集和GPS定位功能的终端;分布式处理系统包括交换设备、调度处理集群、样本文件系统和至少2个计算节点;调度处理集群通过交换设备接入无线网络,并且与样本文件系统、所有的计算节点连接;样本文件系统,用于存储词典和SVM分类器;存储方式为将室外建筑整体区划分为多个矩形的区域;针对每个区域,选取多个场景,为每个场景采集多幅图像,从每幅图像中提取特征点并转化为描述符,利用聚类算法对一个区域内所有场景的所有描述符进行聚类,每个聚类中心作为一个单词,一个区域内的所有单词形成一个词典;每个区域采用区域中心处GPS信息和四个角的GPS信息表示区域位置,存储带区域位置的词典到样本文件系统中;以区域为单位,对区域内每个场景所有图像的描述符进行训练,形成一个支持向量机SVM分类器,一个场景对应一个分类器;将区域位置、SVM分类器和场景信息对应存储到样本文件系统中;所述终端,用于采集当前场景的待识别图像以及GPS信息,提取所述待识别图像 的局部特征,并转换为描述符特征向量;将待识别图像的GPS信息以及描述符特征向量打包成一个描述符文件,发送给调度处理集群;调度处理集群,用于在接收到来自终端的所述描述符文件后,为所述终端建立一个新的匹配任务A,从该描述符文件中提取GPS信息作为匹配任务A的标识,查询当前正在处理的匹配任务中是否存在与匹配任务A相同或相似的匹配任务,如果是,说明已经将与待识别图像相关的词典和SVM分类器加载到各计算节点中,则将描述符文件发送给每个计算节点;否则,为匹配任务A加载相关的词典和SVM分类器;所述相同或相似的匹配任务的查询标准为如果当前正在处理的匹配任务对应的GPS信息与待识别图像的GPS信息一致或者相差本文档来自技高网...
【技术保护点】
一种基于分布式处理和SVM分类器的室外海量物体识别方法,其特征在于,该方法包括:将室外建筑整体区划分为多个矩形的区域;针对每个区域,选取多个场景,为每个场景采集多幅图像,从每幅图像中提取特征点并转化为描述符,利用聚类算法对一个区域内所有场景的所有描述符进行聚类,每个聚类中心作为一个单词,一个区域内的所有单词形成一个词典;每个区域采用区域中心处GPS信息和四个角的GPS信息表示区域位置,存储带区域位置的词典到样本文件系统中;以区域为单位,对区域内每个场景所有图像的描述符进行训练,形成一个支持向量机SVM分类器,一个场景对应一个分类器;将区域位置、SVM分类器和场景信息对应存储到样本文件系统中;所述的识别方法包括如下步骤:步骤1:终端采集当前场景的待识别图像以及GPS信息;步骤2:提取所述待识别图像的局部特征,并转化为描述符特征向量;步骤3:将待识别图像的GPS信息以及描述符特征向量打包成一个描述符文件,发送给分布式处理系统;步骤4:分布式处理系统中设有调度处理集群、多个计算节点和所述样本文件系统;调度处理集群接收到所述描述符文件后,为所述终端建立一个新的匹配任务A,从该描述符文件中提取GPS信息作为匹配任务A的标识,查询当前正在处理的匹配任务中是否存在与匹配任务A相同或相似的匹配任务,如果是,说明已经将与待识别图像相关的词典和SVM分类器加载到各计算节点中,则将描述符文件发送给每个计算节点,然后执行步骤6;否则,执行步骤5;所述相同或相似的匹配任务的查询标准为:如果当前正在处理的匹配任务对应的GPS信息与待识别图像的GPS信息一致或者相差一个预设阈值,则认为存在相同的匹配任务;步骤5:调度处理集群为匹配任务A加载相关的词典和SVM分类器:以待识别图像的GPS信息为圆心,按照预先设定的筛选半径确定一个圆形,根据区域位置从样本文件系统中筛选出与该圆形相交的区域,将筛选出区域的词典和区域内所有SVM分类器分摊加载到各个计算节点中;同时,调度处理集群还将描述符文件发送给每个计算节点;步骤6:每个计算节点从描述符文件中解析出待匹配描述符特征向量;针对每个区域,利用距离关系查找每个待匹配描述符特征向量在词典中对应的单词,并对每个单词的出现频率进行统计,得到统计直方图向量;再将统计直方图向量输入该区域对应所有SVM分类器进行打分,找出分数最高的SVM分类器;将各区域的匹配结果汇总到调度处理集群;步骤7:调度处理集群统计各个计算节点的匹配结果,选出打分最高的SVM分类器,输出该SVM分类器对应的场景信息给终端。...
【技术特征摘要】
【专利技术属性】
技术研发人员:王涌天,桂振文,刘越,陈靖,
申请(专利权)人:北京理工大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。