原位合成TiC颗粒增强钛-铝-钼-铁合金材料及其制备方法技术

技术编号:8212060 阅读:232 留言:0更新日期:2013-01-17 05:22
本发明专利技术公开了一种原位合成TiC颗粒增强钛-铝-钼-铁合金材料,所述合金材料的组成成分质量百分配比为:0.2%≤Al≤2.5%,0.5%≤C≤1.5%,2.5%≤Mo≤3%,0.7%≤Fe≤1.1%,余量为Ti及不可避免的杂质,上述合金材料通过以下方法实现:1)配料:按上述质量百分比称取相应量的铝粉、石墨粉、钼粉、铁粉和钛粉;2)球磨混合;3)将步骤2)中球磨过筛后的混合料通过双向模压的压坯;4)将生坯放入真空容器阴极上;5)调节炉内真空度;6)在氩气达到工作气压后对坯料及阴极进行粒子轰击烧结;本发明专利技术碳取代部分铝作为合金化元素引入到合金中,通过碳的固溶强化和空心阴极快速烧结原位反应引入高熔点弥散TiC颗粒相强化基体的手段,获得高强度和耐磨性能的低成本颗粒增强合金材料。

【技术实现步骤摘要】

本专利技术涉及一种原位合成TiC颗粒增强钛-招-钥-铁合金材料,属于粉末冶金
本专利技术还涉及上述合金材料的制备方法。
技术介绍
钛是20世纪50年代发展起来的一种重要的结构金属,其熔点为1670°C。钛合金因具有比强度高、屈强比高、耐蚀性好等特点成为理想的航天工程结构材料而获得广泛的应用。室温下,钛合金有三种基体组织,钛合金也就分为以下三类α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表不。按用途可分为结构钛合金和高温钛合 金(使用温度大于400°C )。目前使用最广泛的钛合金是工业纯钛(TA1、TA2和TA3),Τ -5Α1-2. 5Sn (TA7)和 Ti_6Al_4V(TC4),其中 1954 年美国研制成功的 Ti_6Al_4V 合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75% 85%。随着航空、宇航、军工等尖端工业技术的飞速发展和石油与化学工业等民用工业领域的巨大市场潜在需求,高性能钛合金的研发受到空前重视和发展(I)高温钛合金目前已成功地应用在军用和民用飞机发动机中的50(T60(TC高温钛合金有英国开发的以α相固溶强化的頂1829、頂1834合金,美国通过牺牲疲劳强度来提高蠕变强度的方法开发Ti-4242S、Ti-1100合金,俄罗斯的BT18Y、BT36合金等,中国开发了 Ti-5. 3Al-4sn-2Zr-lMo-0. 25Si_lNd (Τ 55)和 Ti-Al-Sn-Zr-Mo-Nb-Si-lNd (Ti66)。(2)结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展,为适应更高强度和韧性的要求(如强度提高至1275 1373MPa,比强度提高至29 33,弹性模量提高至196GPa),近年研制了许多新型高强韧性能β钛合金,如美国的Ti-10V-2Fe-3Al(Ti 1023), Ti-15V-3Cr-3Sn-3Al(Til53), Ti-15Mo-3Al-2. 7Nb-0. 2Si ( β 21S);英国的Ti-4Al-4Mo-2Sn-0. 5Si (IMI500),日本的 SPR)0、CR800、SP700 和前苏联的 BT22 等。目前新型高温钛合金主要是α钛合金和α + β钛合金,一般在退火状态下使用且温度不超过60(TC,α+β钛合金可进行热处理强化,但淬透性较低,强化热处理后断裂韧性也降低,因此新型高温钛合金的强度性能远低于新型高强韧性能β钛合金。然而,β钛合金热稳定性较差,不宜在高温下使用。因此,目前采用合金化技术通过固溶强化和热处理时效析出强化手段开发的新型钛合金材料难以兼顾高强韧性能和耐热性能。在钛合金中加入高强度、高刚度的增强相可以进一步提高其比弹性模量、比刚度、力学性能、疲劳和抗蠕变能力,并克服了原钛合金耐磨性及高温性能差等缺点,已成为超高音速宇航飞行器和先进航空发动机的候选材料。与纤维和晶须增强复合材料相比,颗粒增强钛合金材料制备工艺简单,容易实现,所制备的材料各向同性,而且材料性能对增强相和基体的热膨胀系数失配的敏感性也较低,更重要的是可以用传统的钛合金熔炼和加工工艺制备大尺寸零件,显著降低材料的成本。在颗粒增强相选择上,一方面为避免热残余应力,增强颗粒相与基体的热膨胀系数应相近;另一方面增强颗粒相和基体的化学相容性好,以避免高温条件下与钛合金基体发生界面反应,降低界面结合强度。目前常用的增强相有TiB和TiC,以及稀土氧化物等。与传统增强颗粒相外加法制得的材料相比,原位合成颗粒增强钛合金材料有以下优点制备工艺简单,容易实现,所制备的材料各向同性,而且材料性能对增强相和基体的热膨胀系数失配的敏感性低、力学上稳定,因此在高温工作时,性能不易退化;增强相和基体的界面干净,没有界面反应物;原位生成的增强相在基体中分布均匀,表现出优良的力学性能。例如,上海交通大学金属基复合材料国家重点实验室采用熔铸法制备了 TiB及TiC原位反应颗粒增强钛铝合金材料。铸造和粉末冶金技术是制备钛合金材料的主要方法,与铸造技术相比,粉末冶金制备的钛合金能近净形成形,材料利用率高,并且晶粒细小,组织均匀,无偏析 。据调查资料表明,美国仅航空用采用粉末冶金方法生产的钛部件占6(Γ80%,而钛铸件半成品仅占2(Γ25%。近几年国外把采用快速凝固/粉末冶金技术、颗粒增强钛合金作为新型钛合金的发展方向,国内也采用粉末冶金技术开发了原位合成颗粒增强钛合金材料。中国专利技术专利一种粉末冶金钛合金及其制备方法(CN 101962721 Α),提出了一种含银与硼化钛颗粒的粉末冶金钛合金,通过在真空热压烧结钛合金中添加六硼化镧原位反应生成硼化钛颗粒。中国专利技术专利CN 101696474 B提出了一种含稀土氧化物强化相钛合金的粉末冶金制备方法,稀土是以稀土氢化物的粉末的形式加入,稀土氧化物强化相在真空烧结后的变形过程中反应生成;由于氧是钛合金中的杂质元素,氧的存在使钛合金塑性急剧降低,其脆化效应是铝的10倍,当氧含量大于O. 7%时,使钛完全失去塑性变形的能力,但该专利文献中并未说明稀土氧化物强化相生成的原理,并且氧化物生成时容易增加合金中的氧杂质含量。钛属于一种活泼金属,因而钛合金粉末冶金零件的制备对烧结条件要求非常严,传统的真空烧结工艺所需的真空度很高,而所烧结的钛合金制品中残余孔隙较多,导致疲劳性能严重下降。为获得高性能钛合金粉末冶金制品,发展新的成形和烧结工艺(喷射成型、粉末注射成形、热等静压等技术)以消除材料中的孔隙度或将孔隙度降至最小,材料的拉伸性能达到甚至超过熔锻材的水平。然而上述新技术所需设备投资大,工艺复杂,制造成本高,限制了其应用发展。
技术实现思路
本专利技术所要解决的技术问题在于针对上述现有技术中的不足,提供一种原位合成TiC颗粒增强钛-铝-钥-铁合金材料及其制备方法,制备高强韧性低成本颗粒增强合金材料。本专利技术的原位合成TiC颗粒增强钛-铝-钥-铁合金材料的技术思想为铝是钛合金中应用最广泛的α稳定元素,钛合金中的铝以置换原子方式存在于α相中,铝的加入可降低熔点和提高β转变温度,在室温和高温都起到强化作用。Al在烧结过程中促进了Ti与C的相互扩散,有利于TiC颗粒相的形成和细化。此外,加铝也能减小合金的比重。但过高的添加量会出现以Ti3Al为基的α 2有序固溶体,使合金变脆,热稳定性降低。碳是钛合金中的间隙型α相稳定元素,根据钛合金的铝当量计算公式铝当量=%Al+%Sn/3+%Zr/6+%Si*4+(0,C,N)%*10,其作用是铝的10倍。以间隙原子方式存在于α相中碳具有远高于铝的固溶强化效果,本专利技术中碳作为合金化元素引入到合金中,碳对Al的取代作用降低了合金中Al的含量,保证合金具有好的塑韧性;通过碳的固溶强化和空心阴极烧结原位反应引入高熔点弥散TiC颗粒相强化基体的手段获得高强度和耐磨性能的颗粒增强钛铝合金材料。钥是钛合金中最重要的β相稳定元素,作为β钛同晶元素能以置换方式大量溶入β钛中,产生较小的晶格畸变,因此,钥元素在强化合金的同时,可保持较高的塑性,同时钥的加入有利合金组织细化。根据合金元素对钛键合力的影响以及同钛的相互作用的特点,钥的加入可显著本文档来自技高网
...

【技术保护点】
一种原位合成TiC颗粒增强钛?铝?钼?铁合金材料,其特征在于:所述合金材料由以下质量百分比的组分构成:0.2%≤Al≤2.5%,0.5%≤C≤1.5%,2.5%≤Mo≤3%,0.7%≤Fe≤1.1%,余量为Ti及不可避免的杂质。

【技术特征摘要】

【专利技术属性】
技术研发人员:刘子利刘希琴周桂斌朱晓春王怀涛
申请(专利权)人:苏州东海玻璃模具有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1