本发明专利技术涉及一种电弧气相沉积源,其带有导电的陶瓷靶板(1),在靶板的后侧上设置有冷却板(10),其中在要气相沉积的表面(2)上在中央区域中设置有屏蔽装置(3),使得在气相沉积源运行时,电弧的阴极斑点并不到达表面的中央区域(6)中。
【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及一种用于借助阴极电弧气相沉积以及导电陶瓷靶来对工件涂层的方法。本专利技术尤其是涉及一种用于涂层设备的源,所述涂层设备用于执行上述方法。本专利技术尤其是涉及一种用于执行上述方法的涂层设备。
技术介绍
已公开的是,通过如下方式来对工件涂层在真空室中在材料源(下面称为靶)上产生高电流一低电压一电弧放电形式的等离子体。要气相沉积的材料在该工艺中作为阴极设置在电压源的负极上。借助点火设备点燃电弧。电弧将阴极在一个或者多个阴极斑点上熔融,电流过渡部集中在所述阴极斑点中。在此,电子主要从阴极拉出。因此为了维持电弧, 始终考虑在相应的阴极表面上进行电子补给。电弧(或者同义地也称为Arc)或多或少随机地在阴极面上移动。出现对小的靶表面区域的极快的加热,由此局部地对材料进行气相沉积。这在金属靶材料的情况下不是问题,因为金属靶材料基本上具有热冲击耐抗性以及导热性,以便无损地承受通过电弧引起的这种点状的热冲击。然而在金属祀的电弧气相沉积的情况下,小滴问题(Drop I et-Prob I emat i k )有着重大的影响通过快速地局部加热金属靶材料,来自于熔融的靶材料的肉眼可见的溅射物被从靶抛出,所述溅射物作为小滴沉积在要涂层的表面上。这种小滴可能极为不利地影响层特性,例如耐磨损性或者表面粗糙度。因此,需要大量开销以便基本上避免这种小滴。一种可能性在于,在小滴可以降落在基底上之前将小滴滤除。然而这种措施费事并且通常具有对于涂层速率不利的影响。因为电弧在金属靶表面上移动得越慢,则小滴形成得越大,所以也存在的可能性是通过如下方式来减少小滴问题例如借助水平地径向取向的磁力线来强迫电弧在靶表面上快速移动。已公开的专利申请W0200016373在这方面公开了涂层源的一种配置,其中在金属靶之后设置有磁性装置,该磁性装置在靶的中央区域之外导致这种希望的磁场分布。因为在靶的中央区域中磁场的垂直分量占主导地位,其会在一定程度上捕获电弧,所以在那里借助覆盖物来防止电弧到达那里。作为覆盖物,例如提出了氮化硼和/或氮化钛。这些材料如那里描述的那样具有比金属靶材料更小的次级电子发射率以及更小的表面能。这里要注意的是,在陶瓷靶的范围中,小滴问题基本上不存在。在陶瓷靶的情况下,靶材料的熔融由于高熔点而明显比在这种金属化合物的情况下更为复杂。气相沉积可能更多涉及一种升华过程。大多通过电弧而肉眼可见地从陶瓷靶表面打出的块大到使得这些块由于重力而并不到达要涂层的工件上,而是沉积在涂层室的底部上。在工件上形成的层虽然包括还可测的所谓的小滴,然而这些小滴的密度较小,使得无需对其采取其他措施。与此相对,一个大的问题是,陶瓷材料大多具有非常低的热冲击耐抗性。如果该材料不耐热冲击,则形成裂缝,电弧的阴极斑点难以经过所述裂缝。还没有完全清楚为何在裂缝上出现这种捕获。一种可能的解释是可能借助所谓的场发射效应,其中在尖端和边缘上出现变得容易的电子逸出。由于较长的停留时间,在那里的材料附加地被加热,这在陶瓷材料的情况下导致对于电子发射的阈值局部降低。然而这又意味着,始终寻找表面的从中电弧可以最容易地发射电子的区域的电弧更长地停留在裂缝上。因此在这方面涉及一种自身强化的毁坏性的效应。因此,目前在电弧气相沉积的情况下,陶瓷靶在工业上基本不使用。碳化钨形成了对此的例外,其热冲击耐抗性相比于其他陶瓷材料、尤其是例如氮化钛(TiN)、硼化钛(TiB2)、ZrB2、NbB2、硼化钨(WB)或者氮化钨(W2N)更小。因此,目前仅仅普遍的是基于碳化钨靶(WC靶)的电弧气相沉积。然而在市面上存在的需求是也能够借助电弧来经济地气相沉积陶瓷靶的这种迄今在任何情况下在工业标准上都不可能做到的层材料。尤其是应当可以考虑TiN、TiB2、WB和/或还有W2N靶用于借助电弧的气相沉积,而不会提早出现靶断裂。对于TiB2 革E,相应地在 surface and coating technology 49 (1991)第 263 页 至 267 页 O. Knotek, F. Loeffler 的文章“ceramic cathodes for arc-physical vapordeposition: development and application”中报告了问题,其发现阴极斑点集中在局部的位置上,这导致板的过热并且甚至导致板的断裂。
技术实现思路
因此本专利技术所基于的任务是,也能够借助电弧来经济地气相沉积陶瓷靶的这种迄今在任何情况下在工业标准中都是不可能做到的层材料。尤其是应当可以考虑将TiN、TiB2, WB和/或还有W2N靶用于借助电弧的气相沉积,而不会提早出现靶断裂。因此,本专利技术提出的问题是,如何可以有效地拦截通过电弧而传输到靶上的热冲击。从溅射技术(这是替换电弧气相沉积的PVD涂层方法)中已知的是,溅射靶材料与所谓的冷却板粘附(接合),以便能够实现有效的散热。这种冷却板具有高导热性,并且尽可能大面积地并且具有良好热桥地固定在溅射靶材料上。优选的是,所述冷却板具有与用于溅射的靶材料相似的膨胀系数。由于在溅射时高的靶性能,通过比较高的放电电压出现至溅射靶上的高的热输入,然而均匀地分布在整个靶上。但是,在电弧气相沉积情况下出现的、可能导致热冲击的热负荷被局部化,并且特征在于高的热梯度,这导致陶瓷靶的机械过载。与此相对,在溅射情况下热冲击耐抗性由于均匀的温度分布而与靶并不相关。因此,在用于借助电弧来气相沉积的陶瓷靶情况下简单地使用冷却板并不导致令人满意的结果,此外,靶断裂的危险是突出的。出现的是,局部化的温度施加通常导致接合连接正是在那里局部地受到损伤,于是在实际上最需要之处不再存在良好的热接触。然而专利技术人发现,令人吃惊的是,与金属靶的电弧气相沉积关联导致减少小滴问题的一些措施与陶瓷靶关联导致能够可靠地并且对设置有冷却板的陶瓷靶无损地使用电弧气相沉积。因此根据本专利技术,执行电弧气相沉积,使得从其后侧上接合有冷却板的陶瓷靶借助电弧来气相沉积,其特征在于,电弧被强制为在靶表面上快速移动。因此,根据本专利技术的用于电弧气相沉积的涂层设备的电弧源包括至少一个陶瓷靶,在陶瓷靶的后侧上具有良好热接触地、优选接合地设置有冷却板,其特征在于,在所述设备中设置有如下装置借助该装置强制电弧的阴极斑点移动,所述移动减少局部加热并且由此减少形成微裂缝,并且甚至在形成小的微裂缝情况下防止阴极斑点在该位置上的增大的停留可能性。附图说明下面借助附图示例性地进一步阐述本专利技术。其中 图I在示意性侧视图中示出了带有根据本专利技术的靶板的根据本专利技术的源。图2示出了电弧源的根据本专利技术的组成部分的一个实施形式。图3示出了根据本专利技术的电弧源的组成部分的另一实施形式。具体实施例方式在图I中示出了根据本专利技术的电弧气相沉积源,如其在用于对衬底涂层的电弧气相沉积室中所使用的那样。该电弧气相沉积源通常包括点燃设备20(如纯粹示意性地示出 的那样)用于点燃电弧。此外,在靶板I和阳极21之间(又纯粹示意性地示出)连接有大电流一 IH、低电压U1j —直流电压源23。根据本专利技术的电弧源包括导电的陶瓷靶板1,其带有要气相沉积的表面2。在靶板I的后侧的表面7上,即在背离要气相沉积的表面2的表面上,与靶板I大面积地有效热连接地设置有冷却板10。冷却板10由具有高本文档来自技高网...
【技术保护点】
【技术特征摘要】
【国外来华专利技术】...
【专利技术属性】
技术研发人员:M莱希塔勒,
申请(专利权)人:欧瑞康贸易股份公司特吕巴赫,
类型:
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。