一种用于确定解剖结构的异常的系统和方法。所述系统和方法使用处理器分割多个对照患者的体积图像中成像的解剖结构以产生每个所述对照患者的所述解剖结构的对照分割,通过提取所述对照分割的形态的统计学表示来获得标准数据集,分割被进行异常分析的患者的所述解剖结构以产生患者分割并且将所述患者分割与从所述对照分割获得的所述标准数据集进行比较。
【技术实现步骤摘要】
【国外来华专利技术】用于神经精神疾病的标准数据集
技术介绍
很多常见的神经精神疾病(例如,阿兹海默症、精神分裂症、抑郁症)可能会呈现临床表现类似的多种不同疾病,但是对治疗有不同的反应。这些内在的不同可能反映不同的疾病特异性的神经基质。因而,快速识别与这些疾病的神经病理生理学相关的特定大脑区域的体积和形状的异常对描述疾病亚型将会是有用的并且很可能会改善治疗效果。在精神性和神经性疾病的症状完全发作之前识别患有该疾病的个体将允许旨在完全防止发作和/或改善其长期进程的早期介入策略。当前,在多数临床中心,关于大脑结构形态的决定限于MRI图像的主观观察,这是因为MRI大脑体积的手动分割的劳动密集型特性和缺少高精度并且有时效的自动化工具。另外,医师一次通常只关心单一大脑结构。然而,大脑是组织的互联网络。因而,同时研究多个结构可能会揭示重要信息,其可能给重要问题带来新的理解。
技术实现思路
一种用于识别解剖结构的异常的方法,包括使用处理器分割多个对照患者的体积图像中成像的解剖结构,以产生每个对照患者的解剖结构的对照分割;通过提取所述对照分割的形态的统计学表示来获得标准数据集;分割被进行异常分析的患者的解剖结构以产生患者分割;以及将患者分割与从所述对照分割获得的标准数据集进行比较。一种用于识别解剖结构的异常的系统,其具有处理器,该处理器用于将多个对照患者的体积图像中成像的解剖结构分割,以产生每个对照患者的所述解剖结构的对照分害I],以及通过提取所述对照分割的形态的统计学表示来获得标准数据集,并且其中,所述处理器分割被进行异常分析的患者的解剖结构以产生患者分割,从而将所述患者分割与从所述对照分割获得的标准数据集进行比较。一种计算机可读存储介质,其包括能够被处理器执行的指令集。该指令集能够用于将多个对照患者的体积图像中成像的解剖结构分割以产生每个对照患者的解剖结构的对照分割,并且通过提取所述对照分割的形态的统计学表示来获得标准数据集。附图说明图I示出了根据示范性实施例的系统的示意性图表;图2示出了根据示范性实施例的方法的流程图;图3示出了根据图2的方法的用于应用能变形分割的方法的流程图;图4示出了根据图3的方法的能变形大脑模型的透视图;图5示出了根据图3的方法的调整到患者体积的能变形大脑模型。具体实施例方式通过参考以下描述并参照附图,可以进一步理解示范性实施例,其中,相同的附图标记指示相似的元件。示范性实施例涉及用于识别大脑中的区域的体积和形状的异常的系统和方法。特别地,示范性实施例生成患者大脑结构的三维分割,其适用于诸如MRI的体积图像,以将所述分割与包括健康个体的大脑结构的体积和形状的定量描述的标准数据集进行比较。然而,本领域技术人员将要理解,尽管示范性实施例专门描述了大脑结构的分割,但是示范性实施例中的系统和方法可用于识别体积图像中任意解剖3D结构中的体积和形状的异常,例如,所述体积图像例如为CT和/或超声图像。如图I中所示,根据示范性实施例的系统100将感兴趣3D大脑结构的分割与标准数据集进行比较,以识别特定大脑区域的体积和形状异常。系统100包括处理器120,该处理器能够基于体积图像中大脑结构的特征调整该结构的能变形模型,从而通过对对照患者组应用能变形分割以获得标准数据集,以及将该能变形模型调整到将要进行大脑结构分析的患者。然后,处理器102将患者的感兴趣大脑结构的分割与所获得的对照患者的标准数据集进行比较以识别任何异常。能变形模型是从存储器108中存储的模型数据库中选择 的。存储器108也存储所获得的标准数据集以及任意患者大脑结构的分割。使用用户接口104以输入用户偏好用于确定大脑结构的体积、观察大脑结构的特定部分,等等。例如,患者接口 104可以是,显示在显示器106上的图形用户接口。与用户接口相关联的输入通过,例如,鼠标、触摸屏和/或键盘,来输入。大脑结构的分割、体积图像以及患者接口 104的用户选项显示在显示器106上。存储器108可以是任何己知类型的计算机可读存储介质。图2示出了根据示范性实施例的方法200,其中,系统100将感兴趣大脑结构的3D患者分割与标准数据集进行比较,该标准数据集包括与从对照患者组获得的同一结构对应的定量信息。方法200包括,在步骤210将能变形分割处理300应用到对一组健康的对照患者,以产生每一对照患者的感兴趣大脑结构的对照分割。本领域技术人员将理解,存在不只一个感兴趣大脑结构,并且所有大脑结构均可如所述进行分割。参考图3,以下提供了能变形分割处理300的示范性实施例的详细描述。特别地,选择大脑结构的能变形模型并且自动调整以在体积和形状上对应于对照患者的大脑结构。在步骤220,基于对照患者的结构的能变形分割,通过提取大脑结构的内在形态的统计学表示获得标准数据集。标准数据集将包括关于(一个或多个)健康对照患者的不同大脑结构之间的关系的体积、形状和定量描述的信息,例如,基于均值和方差和/或范围值的统计学描述。作为MRI体积的补充,使用表不不同大脑结构的表面来描述结构外部的几何结构。例如,坐标、体素值以及不同形状描述符(例如,表面曲率、从中矢面的点位移、表面的局域变形,等等)提供大脑结构的一种简单、定量的描述。标准数据集的描述性部分可能还包括标签,其可以由用户选择以显示关于大脑结构的文本信息。该文本信息可能对应其他源,例如,如放射学报告,其可以提供标准数据集的更完整表示。因而,所述标签允许标准数据集的方差、偏移,也可将其与患者大脑结构的能变形分割进行比较。本领域技术人员将理解,标准数据集存储在存储器108中,使得该标准数据集可以根据需要在不同时间被使用于不同患者。本领域技术人员还将理解,一旦获得标准数据集并将其存储在存储器108中,那么可以在任何时间使用标准数据集,从而,如下所描述的步骤230-290可以与如上所描述的步骤210和220独立地开始。在步骤230,将能变形分割处理300应用到其大脑结构被分析以识别异常的患者,从而产生(一个或多个)感兴趣大脑结构的患者分割。针对患者的能变形分割处理300与步骤210中对健康对照患者实施的能变形大脑分割方法基本相同,并且如以下参考图3描述。在步骤240,在步骤230产生的患者分割在显示器106上显示。然后在步骤250,系统100经由可以显示用户选项的用户接口 104接收用户输入。用户可以输入用户输入以选择存储患者分割、检索之前存储的患者分割、选择识别患者分割中的异常,等等。其他用户输入可包括,选择放大和/或缩小所显示图像的特定部分,改变特定图像的视角,等等。其中,用户在步骤250经由用户输入选择识别异常,处理器在步骤260确定与诸如患者分割的体积、形状、曲率和结构相关的感兴趣参数的值。在步骤220,获得与标准数据集中包含的数据类型对应的感兴趣参数。在步骤270,将患者分割的感兴趣参数的值与从对照分割获得的标准数据集进行比较。例如,将来自患者分割的坐标、体素值和其他定量的形状描述符与从对照分割获得的标准数据集的值进行比较。患者分割的大脑结构可以如用户所 选择地单独地比较,或者作为替代,同时地比较,从而一次分析所有分割的大脑结构。如果标准数据集中包含了统计学信息,那么可能直接导出感兴趣患者的大脑结构是否健康的概率度量。在步骤280,在显示器106上显示患者分割本文档来自技高网...
【技术保护点】
【技术特征摘要】
【国外来华专利技术】2010.03.02 US 61/309,5431.一种用于识别解剖结构的异常的方法,包括 使用处理器(102)分割(210)多个对照患者的体积图像中成像的所述解剖结构,以产生所述对照患者中的每个的所述解剖结构的对照分割; 通过提取所述对照分割的形态的统计学表示来获得(220)标准数据集; 分割(230)被进行异常分析的患者的所述解剖结构,以产生患者分割;以及 将所述患者分割与从所述对照分割获得的所述标准数据集进行比较(270)。2.如权利要求I所述的方法,其中,比较(270)所述患者分割包括确定与所述标准数据集的数据类型对应的感兴趣参数。3.如权利要求I所述的方法,还包括 经由文本和视觉指示中的一种在显示器(106)上显示(280)所述患者分割和所述患者分割与所述标准数据集之间的所述比较的结果。4.如权利要求3所述的方法,其中,所述视觉指示经由颜色和颜色梯度中的至少一种示出所述患者分割的所述感兴趣参数与所述对照患者的所述标准数据集的偏离范围。5.如权利要求I所述的方法,其中,分割(230)所述解剖结构还包括 选择(310)所述解剖结构的能变形模型,所述能变形模型由包括顶点和边的多个多边形形成; 在显示器上显示(320)所述能变形模型; 检测(340)与所述多个多边形中的每个对应的感兴趣的所述解剖结构的特征点,其中,所述特征点是基本沿感兴趣的所述解剖结构的边界的点;以及 通过将所述顶点中的每个向对应的特征点移动直到所述能变形模型变形到感兴趣的所述解剖结构的边界来调整(350)所述能变形模型,形成感兴趣的所述解剖结构的分割。6.如权利要求I所述的方法,其中,所述标准数据集包括与所述对照分割的体积和形状中的至少一个对应的定量值。7.如权利要求6所述的方法,其中,所述定量值包括与表面曲率、从中矢面的位移以及所述对照分割的表面的局部变形中的至少一个对应的值。8.如权利要求I所述的方法,还包括 将所述标准数据集存储到存储器中,以便进行调取及与患者分割进行比较。9.如权利要求I所述的方法,还包括 接收(250)关于所述患者分割的用户输入。10.一种用于识别解剖结构的异常的系统(100),包括 处理器(102),其分割多个对照患者的体积图像中成像的所述解剖结构,以产生所述对照患者...
【专利技术属性】
技术研发人员:L·G·扎戈尔谢夫,R·克内泽尔,D·格勒,钱悦晨,J·威斯,M·A·加尔林豪斯,R·M·罗思,T·W·麦卡利斯特,
申请(专利权)人:皇家飞利浦电子股份有限公司,达特茅斯学院,
类型:
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。