本发明专利技术公开了一种可用于薄板类光学零件的单点金刚石补偿式切削加工方法,包括以下步骤:用离线面形检测仪器检测得到待加工工件的初始面形数据;将待加工工件进行装夹,利用在位检测系统测量装夹后的待加工工件,得到在位检测初始数据;对在位检测初始数据进行数据处理,得到在位检测面形数据;将得到的初始面形数据和在位检测面形数据进行融合,并经过滤波、补边处理后得到补偿加工面形数据;将补偿加工面形数据生成自由曲面的刀具加工路径,根据该刀具加工路径并通过三轴联动的自由曲面加工方法对待加工工件进行加工,直至待加工工件的精度满足要求,完成工艺过程。本发明专利技术的工艺具有步骤简单、易用、成本低、加工精度和效率高等优点。
【技术实现步骤摘要】
本专利技术涉及光学零件的超精密切削加工领域,尤其涉及一种薄板类光学零件的单点金刚石补偿式切削加工方法。
技术介绍
能源问题已经成为制约社会发展的瓶颈。世界各国均投入大量的人力物力致力于解决这一问题,其主要包括两个分支节约现有能源和开发新能源。在航空航天领域中使用的光学元件,最重要的要求之一就是质量轻,以节约能源损耗,减小发射成本。对轻质的追求使得光学工程师设计使用了大量的薄板类光学零件。铝合金材料由于其密度小、受热变化均匀等特点在光学零件中得到了广泛应用。加工铝合金类光学零件最有效的办法是单点金刚石超精密切削技术。此项技术能够直接加工出亚微米级的面形精度和纳米级的表面粗 糙度,同时能够高效地对大陡度非球面和自由曲面等复杂曲面进行加工。在新能源开发方面,惯性约束核聚变技术是最具有轰动性的技术之一,其中用到了大量的薄板类光学零件。尤其是磷酸二氢钾(KDP)晶体光学零件,由于其优秀的非线性光学特性,成为了惯性约束核聚变技术中唯一可用的电光开关和倍频元件。但是因其具有各向异性、质软、易潮解、脆性高、对温度变化敏感和易开裂等不利于材料加工的特点,使得KDP晶体不能用传统的抛光方法进行加工。国际上通用的加工方法是单点金刚石飞切技术。上述两类光学零件均具有薄板性质,且均要求达到亚微米级的高形状精度。加工中的装夹变形是影响零件最终加工精度的最重要因素之一。对于这类薄板类光学零件,最有效的装夹方式为真空吸附的方式;但是,即使较小的真空吸附力也会造成薄板类零件加工表面产生显著的受力变形,从而影响精度指标的控制。为此,研究一种薄板类光学零件的超精密切削工艺,有效避免吸附变形造成的面形误差,对于实现高精度的加工具有重要意义。
技术实现思路
本专利技术要解决的技术问题是克服现有技术的不足,提供一种工艺步骤简单、易用、成本低的,通过采用本专利技术的方法加工薄板类光学零件,可有效避免装夹吸附力给薄板类光学零件带来的受力变形,排除加工基准面形状和加工表面形状的耦合,实现薄板类光学零件的高精度高效率的加工。为解决上述技术问题,本专利技术提出的技术方案为一种,包括以下步骤 (I)检测初始面形用离线面形检测仪器(一般优选波面干涉仪)检测得到待加工工件的初始面形数据; (2 )检测装夹后的在位面形将待加工工件进行装夹(优选适用于吸附装夹方式),利用在位检测系统测量装夹后发生变形的待加工工件,得到在位检测初始数据(利用在位检测数据的高精度获取方法获得);对在位检测初始数据进行数据处理(包括平滑处理、插值处理和滤波处理等步骤,均属于常规的数据处理方法),得到在位检测面形数据; (3)面形数据融合将上述步骤(I)中得到的初始面形数据和上述步骤(2)中得到的在位检测面形数据进行融合(采用融合算法),并经过滤波、补边处理后得到补偿加工面形数据; (4)切削加工将上述步骤(3)中得到的补偿加工面形数据生成(采用刀具路径生成算法,刀具路径可由本领域技术人员根据工艺参数并利用现有软件编程生成)自由曲面的刀具加工路径,根据该刀具加工路径并通过三轴联动的自由曲面加工方法对待加工工件进行加工,直至待加工工件的精度满足要求,完成工艺过程。上述的单点金刚石补偿式切削加工方法中用到了在位检测系统测量装夹后发生变形的待加工工件,该在位检测系统最关键的部件包括一非接触式位移传感器,通过设计合理的夹具将前述非接触式位移传感器固定在机床上,即可实现其在线测量位移的功能。另外,在位检测系统要想实现对待加工工件的准确测量,其精度必须高于加工系统(即加工 用的机床),因此一般情况下,在位检测系统应该是独立于加工机床、且比加工出的工件精度高的一个检测平台。上文提到本专利技术使用的在位检测系统包括有一非接触式位移传感器,以采集待加工工件的面形数据;在此基础上,由于本专利技术所要补偿的面形误差相对于机床自身的误差一般大了 10倍以上,因此考虑到技术方案的可行性和便捷性,本专利技术的在位检测系统实际上还包括有机床本身,以提供遍历工件表面的运动轨迹。换言之,本专利技术加工中用到的机床既是加工设备,又是检测设备的一部分,因此本专利技术的在位检测系统的精度由位移传感器和机床自身的精度予以保证。上述的单点金刚石补偿式切削加工方法,所述待加工工件优选适用于铝合金材质的薄板类光学零件或是KDP晶体薄板类光学零件。上述本专利技术的加工方法主要包含了在位检测步骤和后续三轴联动的自由曲面面形的切削工艺步骤,其基本原理是通过设置一在位检测系统,并通过该系统高精度的非接触式位移传感器和机床自身精度保证在位检测系统的精度,然后利用在位检测系统测量得到吸附变形后的薄板类光学零件的在位检测面形数据,结合离线测量得到的装夹吸附前的初始面形数据,计算出吸附变形量和需要补偿加工的面形数据,最后通过三轴联动的自由曲面加工方法实现补偿面形数据的加工。与现有技术相比,采用本专利技术的方法对薄板类光学零件进行加工的优点在于本专利技术在加工系统中采用了非接触的位移传感器,实现被加工工件的无损检测;利用高精度的位移传感器和超精密机床自身及动态伺服的精度,在位检测系统简单易用且具有小于0.5 Pm的测量精度;通过采用在位检测数据的高精度获取方法,同时保持在位面形的幅值和相位信息准确;通过在位检测数据和离线检测数据的融合算法,实现面形数据的填补和滤波;通过结合三轴联动(超精密车床)的自由曲面面形切削的刀具路径生成算法,得到最优的刀具路径,实现自由曲面面形的补偿式切削加工(前述算法都属于本领域中比较常规的算法)。总的来说,本专利技术真正实现了薄板类光学零件吸附变形量的检测和确定性补偿,加工精度只取决于在位检测系统的精度和机床动态跟踪精度,有效避免了吸附力给薄板类光学零件带来的大变形量,排除了加工基准面精度误差对光学零件加工误差的影响,对加工中的基准面没有严格的面形要求,是一种高效高精度的加工工艺方案。附图说明图I为本专利技术薄板类光学零件的单点金刚石补偿式切削加工的工艺流程图。图2为本专利技术实施例中离线检测得到的初始面形数据图。图3为本专利技术实施例中在位检测系统测得的初始数据,其中左图为初始数据图,右图为左图在框选处的局部放大图。图4为本专利技术实施例中图3所示初始数据经处理得到插值后的在位检测面形数据图。图5为本专利技术实施例中图2、图4所示面形数据经融合处理后得到的补偿加工面形数据图。图6为本专利技术实施例中图5所示面型数据经滤波和补边后的补偿加工面形数据结果。图7为本专利技术实施例中所需补偿的自由曲面面形的刀具加工路径图。图8为本专利技术实施例中工件加工完成后离线检测得到的面形数据图。具体实施例方式以下结合说明书附图和具体实施例对本专利技术作进一步描述。实施例 待加工的光学元件为直径270mm、厚度IOmm的圆形KDP晶体薄板类工件,对该工件进行反射面形加工,如图I所示,具体包括以下步骤 1.用离线面形检测仪器检测得到待加工工件的初始面形数据,本实施例中是采用Zygo波面干涉仪对待加工工件先进行初始面形数据的检测,测得的结果如图2所示,PV=8. 6 入(入=632. 8nm); 2.将待加工工件吸附安装在专用吸盘上,用搭建好的在位检测系统对吸附后的在位面形进行检测,得到在位检测初始数据如图3所示;对图3所示的在位检测初始数据进行数据处理,插补后得到如图4所示的三维在位检测面形数据; 3.本文档来自技高网...
【技术保护点】
一种可用于薄板类光学零件的单点金刚石补偿式切削加工方法,包括以下步骤:(1)检测初始面形:用离线面形检测仪器检测得到待加工工件的初始面形数据;(2)检测装夹后的在位面形:将待加工工件进行装夹,利用在位检测系统测量装夹后发生变形的待加工工件,得到在位检测初始数据;对在位检测初始数据进行数据处理,得到在位检测面形数据;(3)面形数据融合:将上述步骤(1)中得到的初始面形数据和上述步骤(2)中得到的在位检测面形数据进行融合,并经过滤波、补边处理后得到补偿加工面形数据;(4)切削加工:将上述步骤(3)中得到的补偿加工面形数据生成自由曲面的刀具加工路径,根据该刀具加工路径并通过三轴联动的自由曲面加工方法对待加工工件进行加工,直至待加工工件的精度满足要求,完成工艺过程。
【技术特征摘要】
【专利技术属性】
技术研发人员:关朝亮,彭小强,铁贵鹏,戴一帆,尹自强,
申请(专利权)人:中国人民解放军国防科学技术大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。