一种透镜热效应测量系统及测量方法技术方案

技术编号:7896555 阅读:165 留言:0更新日期:2012-10-23 03:20
本发明专利技术公开一种透镜热效应的测量系统,沿光传输方向依序包括掩模、物方标记、待测透镜和工件台,还包括:至少一个机器视觉系统,所述至少一机器视觉系统位于所述工件台,从所述物方标记出射的光经所述待测透镜成像于所述至少一机器视觉系统。以及一种透镜热效应的测量方法。

【技术实现步骤摘要】

本专利技术涉及光刻领域,尤其涉及在光刻领域中利用机器视觉系统的透镜热效应测量系统及测量方法
技术介绍
在曝光过程中,镜头的热效应是导致成像质量变差的一个非常重要的因素。镜头的热效应是指由于镜片在曝光过程中吸热,产生微小的形变, 使镜头的一些光学参数(如倍率、畸变、离焦、波像差等)相对其设计值产生偏差。当曝光剂量需求变大,并且在对硅片连续曝光的过程中,透镜持续吸热,这种形变会更加明显,因此,必须对透镜热效应加以校正。当前测量透镜热效应采用的办法有两种一种是将掩模/掩模台基准板上的标记曝光到硅片上,通过读取硅片上的标记信息,拟合计算出热效应比例因子和时间常数;另一种是通过对准的办法,利用工件台相应的传感器测量标记位置的变化,拟合计算热效应比例因子和时间常数。由于本专利技术主要面向中低端的光刻设备,相应地,当前的两种测量方法就分别会有很多问题出现。对第一种方法,要求镜头持续处于曝光状态下,这将导致的问题是I、硅片受热,很容易产生形变,导致采样数据不准确;2、对场点持续曝光,会使得图形线条变细,在某些地方线条断裂,甚至会看不到线条;3、照明系统的杂散光很强,也会造成曝光在硅片上的图像污染。由此造成拟合结果不准确,达不到所要求的目标。对第二种方法,在工件台上,必须要使用特定传感器,这样会有问题I、传感器的测量精度要足够高,这同时造成传感器造价过高;2、测量标记和传感器是一一对应的,因此,测量热效应时,能够使用的标记类型单3、在中低端市场,对套刻要求较低,有一套简单实用的系统就足够了。针对以上两种情况,提出使用机器视觉系统来测量和校正透镜热效应。这种方法成本低,测量准确、使用简单方便,使用多种标记且不会受到场点曝光时间过长的影响。
技术实现思路
本专利技术的目的在于提供一种用于透镜热效应的测量系统及测量方法,可以测量持续受热情况下,投影物镜像质的变化情况,从而得到透镜热效应比例因子和时间常数,反过来又可以预测透镜热效应。根据本专利技术的一种透镜热效应的测量系统,沿光传输方向依序包括掩模、物方标记、待测透镜和工件台,还包括至少一个机器视觉系统,所述至少一机器视觉系统位于所述工件台,从所述物方标记出射的光经所述待测透镜成像于所述至少一机器视觉系统。或者,所述至少一机器视觉系统位于所述透镜热效应的测量系统的物方,从所述物方标记出射的光经所述待测透镜成像于位于所述工件台上形成所述物方标记的像,所述物方标记的像经所述工件台上的标记反射至所述至少一机器视觉系统。其中所述待测透镜为投影物镜。其中所述物方标记为所述掩模或掩模台基准板上标记。一种透镜热效应测试的方法,包括选取测试采样时间点;持续曝光的同时按照选取好的采样时间点采集数据;对所采样数据进行数学处理,拟合计算热效应比例因子和时间常数。其中,采用双指数模型来描述透镜热效应,所述模型为 Drift (t) = A1* [l_exp (_t/ T1)] +A2* [1-exp (-t/ T2)].......(I)A1 = U ^S^I^WR...............(2)A2 = U 2*S*T*I*WR..............(3)其中t为时间;iil,2为LH模型的比例因子参数;T 1,T 2为LH模型的时间常数参数;S为成像视场尺寸;T为掩模版透射率;1为光通量;WR为硅片反射率因子。一种透镜热效应测试的方法,包括选取测试采样时间点;关闭曝光光源,然后按照选取好的采样时间点采集数据;对所采样数据进行数学处理,拟合计算热效应比例因子和时间常数。其中,采用双指数模型来描述透镜热效应,所述模型为Drift (t) = A1* [l_exp (_t/ T1)] +A2* [1-exp (-t/ T2)].......(I)A1 = U ^S^I^WR...............(2)A2 = U 2*S*T*I*WR..............(3)其中t为时间;iil,2为LH模型的比例因子参数;T 1,T 2为LH模型的时间常数参数;S为成像视场尺寸;T为掩模版透射率;1为光通量;WR为硅片反射率因子。本专利技术采用了机器视觉系统(MVS)系统,只要能测定标记的位置,使用哪种标记没有特别的要求;由于采用的是MVS读取标记位置的方式,不需要硅片,因此,不会受到硅片受热变形等造成的影响。由于标记的测量位置是通过工件台上的机器视觉系统采集的,不使用硅片,不会受到曝光时间长短的影响。而且,测量设备成本低廉,使用图像处理算法测量标记位置,工艺适用性较高。附图说明图I所示为根据本专利技术的测量透镜热效应的方法的第一和第二实施例所用的热效应测量系统的结构示意图;图2所示为一热效应的上升曲线;图3所示为一热效应的下降曲线;图4所示为根据本专利技术的的测量透镜热效应的方法所用的热效应测量系统的另一种结构不意图。具体实施方式下面,结合附图详细描述根据本专利技术的优选实施例。为了便于描述和突出显示本专利技术,附图中省略了现有技术中已有的相关部件,并将省略对这些公知部件的描述。第一实施例根据本专利技术的利用机器视觉系统测量透镜热效应的方法所用的热效应测量系统的结构示意图如图I所示,该设备包括掩模台基准板I、掩模/掩模台上标记2、掩模3、投影物镜4、机器视觉系统(MVS) 5和工件台6。利用该设备进行热效应测试的基本方法是将掩模/掩模台上标记2通过投影物镜4投射到工件台6上,由工件台6上的MVS5测量标记位置随时间的变化情况,收集时间和位置信息直到热平衡状态(需要几个小时),通过数学方法找出时间和像质参数变化的关系,即热效应比例因子和时间常数。、一般而言,采用双指数模型,可以比较精确的描述透镜热效应Drift (t) = A1* [l_exp (_t/ T1)] +A2* [1-exp (-t/ T2)].......(I)A1 = U ^S^I^WR...............(2)A2 = U 2*S*T*I*WR..............(3)其中t为时间;U I, ii 2为LH模型的比例因子参数;Tl,T 2为LH模型的时间常数参数;S为成像视场尺寸;T为掩模版透射率;I为光通量;WR为硅片反射率因子。根据本专利技术的第一实施例的测试方法包括下面的步骤确定测试的目标是上升曲线还是下降曲线,即要持续加热(曝光)还是要持续放热(冷却,关闭曝光),这决定了热效应曲线的上升/下降趋势;在本实施例中选择热效应曲线的上升曲线作为测试的目标,因而镜头需要持续加热,即镜头处于“冷”状态;图2所示为一典型的热效应的上升曲线;横轴表示测试时间,纵轴表示像质变化(已归一化)。可以看到热效应曲线在测量初始阶段变化较快,约5000s之后,基本达到饱和。选取测试采样时间点,即经过多长时间采样一次,采用先紧后松的策略,即开始时的采样时间间隔长,后来的采样时间间隔短;检查分系统状态包括MVS、掩模/掩模台基准板、工件台等是否已准备好;将硅片上到工件台上,以使测试工况和实际的曝光工况相同;曝光,然后按照选取好的采样时间点采集数据;对采样数据进行数学处理,拟合计算热效应比例因子和时间常数。以上步骤完成之后,冷却镜头,在下一个“冷”状态下,重复以上步骤三一步骤六,用拟合数据和当前实验数据相比较,可以验证模型正确性。第二实施例在本实施例中进行本文档来自技高网
...

【技术保护点】
一种透镜热效应的测量系统,沿光传输方向依序包括掩模、物方标记、待测透镜和工件台,其特征在于,透镜热效应的测量系统还包括:至少一个机器视觉系统,所述至少一机器视觉系统位于所述工件台,从所述物方标记出射的光经所述待测透镜成像于所述至少一机器视觉系统。

【技术特征摘要】
1.一种透镜热效应的测量系统,沿光传输方向依序包括掩模、物方标记、待测透镜和工件台,其特征在于,透镜热效应的测量系统还包括 至少一个机器视觉系统,所述至少一机器视觉系统位于所述工件台,从所述物方标记出射的光经所述待测透镜成像于所述至少一机器视觉系统。2.—种透镜热效应的测量系统,沿光传输方向依序包括掩模、物方标记、待测透镜和工件台,其特征在于,透镜热效应的测量系统还包括 至少一个机器视觉系统,所述至少一机器视觉系统位于所述透镜热效应的测量系统的物方,从所述物方标记出射的光经所述待测透镜成像于位于所述工件台上形成所述物方标记的像,所述物方标记的像经所述工件台上的标记反射至所述至少一机器视觉系统。3.根据权利要求I或2所述的系统,其中所述待测透镜为投影物镜。4.根据权利要求3所述的系统,其中所述物方标记为所述掩模或掩模台基准板上标记。5.一种透镜热效应测试的方法,包括 选取测试采样时间点; 持续曝光的同时按照选取好的采样时间点采集数据; 对所采样数据进行数学处理,拟合计算热效应比例因子和时间常数。6.根据权利要求5所述的透镜热效应测试方法,其中,采用双指数模型来描述透镜热效应,所述模型为 Drift (t) = A1* [1-ex...

【专利技术属性】
技术研发人员:冯盛马明英
申请(专利权)人:上海微电子装备有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1