一种利用多个探测器的伽马能谱核素识别方法,包括:步骤1:对多个探测器在同一时间内从被检测物质采集到的能谱分别寻峰,步骤2:利用步骤1中寻到的峰构成合并峰,每一个合并峰由能量之差在预定范围的多个峰合并而成,步骤3:利用步骤2中的合并峰来识别核素。通过本发明专利技术的方法,即可以利用多个探测器带来的高灵敏度和全方位检测,又避免了多个能谱相加带来的分辨率下降的问题。此方法不受探测器个数的限制,部分探测器损坏时也可使用。
【技术实现步骤摘要】
本专利技术涉及一种伽马能谱核素识别方法,特别是。
技术介绍
通过寻峰进行核素识别的方法在放射性物质监测系统中被广泛使用。这类方法首先通过寻峰找到能谱中的峰的位置并估计出峰的面积等信息,然后在编辑好的核素库中寻找具有和这些峰位能量匹配的核素,通过建立线性方差组或其他方法估计每种核素对各个峰面积的贡献,从而判断是否含有某种核素。探测器的探测效率和分辨率是影响这类方法的主要因素。为了能提高探测效率,往往使用多个探测器从不同的角度和位置对监测对象进行探测。虽然使用多个探测器可以提高总的探测效率,然而这也引出一个新的问题,就是如何同时处理由多个探测器得到的多个伽马能谱。常见的方法是将这些能谱通过能量对齐后相加,这种方法的问题是很难将这些能谱对齐。由于各个探测器的线性和稳定性存在差异,使得相加后的能谱分辨率明显变差,从而影响寻峰和识别的结果。
技术实现思路
本专利技术的目的是提供一种,该方法至少部分减轻现有技术中存在的问题。本专利技术的另一个目的是提供一种,该方法克服多个能谱相加时分辨率变差的问题。根据本专利技术的一方面,本专利技术提供了一种,包括步骤1 对多个探测器在同一时间内从被检测物质采集到的能谱分别寻峰,步骤 2 利用步骤1中寻到的峰构成合并峰,每一个合并峰由能量之差在预定范围的多个峰合并而成,步骤3 利用步骤2中的合并峰来识别核素。根据本专利技术的另一方面,所述还包括 步骤4 基于步骤1中寻到的峰来识别核素,以及步骤5 利用步骤3和步骤4中识别出的核素确定识别出的核素。根据本专利技术的另一方面,在步骤1中,当寻到的峰的显著度高于第一显著度阈值时保留,否则剔除,以及在步骤4中,仅仅对显著度大于或等于第二显著度阈值的、在步骤1 中寻到的峰来识别核素,第二显著度阈值大于第一显著度阈值。根据本专利技术的另一方面,在步骤1中,当寻到的峰的显著度高于第一显著度阈值时保留,否则剔除,以及在步骤3中,仅仅对显著度大于或等于第二显著度阈值的、在步骤2 中的合并峰来识别核素,第二显著度阈值大于第一显著度阈值。根据本专利技术的另一方面,在步骤2中,每一个合并峰的面积等于所包括的峰的面积的和,每一个合并峰的峰位是所包括的峰的峰位的加权平均值,权重是所述峰的显著度, 合并峰的显著度是合并峰的面积与合并峰的误差值的比,合并峰的误差值是所包括的峰的误差值的平方和再开方。 根据本专利技术的另一方面,在步骤5中根据步骤3和步骤4中识别出的核素的置信系数确定识别出的核素。 根据本专利技术的一方面,在步骤5中如果步骤3和步骤4中识别出的核素的置信系数大于预定的置信系数阈值,则所述核素作为识别出的核素。根据本专利技术的一方面,所述识别出的核素的置信系数是步骤3和步骤4中该核素的置信系数的最大值。根据本专利技术的另一方面,置信系数是核素在被检测物质中的出现概率。所述多个探测器由碘化钠制成,并且将每个峰加入到某个合并峰的过程中,该峰与合并峰能量之差的绝对值小于二者之和的大约3%。此方法包含三个主要步骤1)对各个探测器的伽马能谱分别进行寻峰和核素识别;2)综合所有探测器伽马能谱的峰,得到总的峰信息;幻利用总的峰信息进行核素识别。第1步主要体现在寻峰时灵敏度较高,各个谱单独识别时只用显著度较高的峰以降低误报。用较高寻峰灵敏度得到的所有峰,在第2步综合,通过各个谱之间的相互验证来去除噪声。第2步中采用聚类的方法将第1步所有的寻峰结果综合,将各个谱中位置相近的峰合并得到新的峰位、面积、显著度等,并滤除显著度较低的峰。第3步用第2步的结果进行核素识别,并与第1步各个谱的识别结果进行综合以得到最终的识别结果。此方法无需将各个探测器的能谱对齐或相加,而是直接对各个能谱分别寻峰,然后综合。这样即保持了多个探测器的高效率和全面性,又不降低能谱的分辨率。即可以利用多个探测器带来的高灵敏度和全方位检测,又避免了多个能谱相加带来的分辨率下降的问题。此方法不受探测器个数的限制,部分探测器损坏时也可使用。附图说明图1是本专利技术的伽马能谱核素识别方法的流程图。图2是用碘化钠(NaI)探测器获取的核素Csl37的伽马能谱。图3是本专利技术的寻峰算法的流程图。图4是描述核素发出射线被探测器吸收,在能谱中寻到对应的峰的贝叶斯网络模型。图5是根据本专利技术的的实施例的流程图。图6是根据本专利技术的的实施例的示意流程图。具体实施例方式下面将结合附图来详细描述本专利技术的伽马能谱核素识别方法。实施例1图1示出了本专利技术的伽马能谱核素识别方法的流程图。如图1所示,在步骤SOl中,通过伽马射线探测装置来获取被检测物质的伽马能谱,并将其输入到伽马能谱处理模块进行寻峰和核素识别。此处所述的伽马射线探测装置可以采用现有的各种类型的伽马射线探测装置(例如碘化钠探测器),因而本文将不再赘述伽马射线探测装置的具体结构。图 2示出了用碘化钠探测器获取的核素Csl37的伽马能谱(其中横坐标是道数,纵坐标是计数)。在接下来的步骤S02中,将进行寻峰(即寻找伽马能谱中的峰),求出峰的道数、 能量、面积及显著度,该步骤的具体流程将在后文中结合图3进行详细说明。在该步骤S02 中,通过采用基底分离算法、二次差分寻峰法、高斯混合模型、最小二乘曲线拟合等方法,保证了峰位和峰面积的准确性。本专利技术的伽马能谱核素识别方法的第三步是步骤S03,其通过将步骤S02中所寻找到的伽马能谱中的峰与事先存储的核素库中核素的谱线进行匹配,以寻找有谱线与所述峰的峰位对应的核素作为识别的备选核素。只有当核素库中某核素的谱线中有一条与之前步骤中所寻找到的某个峰匹配时,该核素才有出现可能(即在被检测物质中可能会包含该核素),所以先对核素库中的每个核素进行一次筛选,把有谱线和之前所寻找到的能谱中的峰位匹配的核素留下来作为备选核素,其他的核素则认为不可能出现在被检测物质中。在之后的步骤S04中,对S03中筛选得到的备选核素用如图4所示的贝叶斯网络模型进行建模,并推断出该备选核素在被检测物质中出现的概率。接下来的步骤S05将相互干扰的核素及其对应的峰进行分组,在每组内进行迭代,每次迭代选出最有可能的一个核素,估计其对峰面积的贡献并从峰面积中扣除相应的部分,以去除备选核素之间由于匹配到相同的峰而造成的相互干扰,更新各个备选核素出现的概率,得到最终的置信系数。在后文中将结合图4来具体说明上述步骤S04和S05。下面将结合图3来说明上述步骤S02的具体处理过程。如图3所示,步骤S02包括如下子步骤减去本底并光滑S020、分离基底S021、二次差分寻峰S022、峰区分割S0M、高斯混合模型估计S025、最小二乘拟合以及基底类型判断S027。在子步骤S020中,对输入的伽马能谱进行光滑处理。首先用中值滤波去除输入数据中的奇异点,然后进行高斯滤波。根据输入的伽马能谱数据的峰形和噪声随能量的变化, 对滤波器的长度和平滑程度作相应的调整。在低能区峰宽较小,峰比较密集,所以应当采用平滑程度较低的滤波器,对高斯滤波器而言就是要采用方差较小的高斯函数。而当能量较大时,峰的宽度也相应的变大,此时峰的个数一般而言也比较少,但是由于计数率低,数据显得很不光滑,所以在这种情况下应当采用平滑程度较高的滤波器,对高斯滤波器而言就是要采用方差较大的高斯函数。子步骤S021中所述的分离基底是指把伽马能谱分为纯峰信号和基底信号两部分。其中“基底”表示本文档来自技高网...
【技术保护点】
【技术特征摘要】
【专利技术属性】
技术研发人员:王强,赵崑,阮明,
申请(专利权)人:同方威视技术股份有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。