空间真空环境下的温度测量与校准平台,有利于实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验包括恒温槽,所述恒温槽内设置有双子真空腔,所述双子真空腔包括第1真空腔体和第2真空腔体,所述第1真空腔体和第2真空腔体通过三通连接真空抽取装置,所述第1真空腔体的外壁上和所述第2真空腔体的外壁上均设置有标准温度计传感器,所述标准温度计传感器连接温度二次仪表;所述第1真空腔体的真空腔中设置有激光光路反射装置,用于校准基于可调谐二极管激光吸收光谱技术的非接触式测温系统;所述第2真空腔体的真空腔用于容纳温度传感器,以校准采用所述温度传感器的接触式测温系统。
【技术实现步骤摘要】
本专利技术涉及真空环境下的温度测量与校准技术,特别是一种空间真空环境下的温度测量与校准平台。采用所述平台有利于解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验。
技术介绍
为验证卫星热设计的正确性,保证卫星在空间轨道的可靠运行,在卫星研制过程中必须进行空间热环境模拟实验。地面模拟空间热环境是实现热试验的基本条件,在热真空试验中,相关部位的温度是需要准确测量的核心参数之一。按温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要为T型铜-康铜热电偶系统,以钼电阻和热敏电阻进行比对。为确保温度测量的准确性和溯源性,需要定期对温度测量设备进行检定校准。目前,温度校准主要是在常压下进行。随着航天技术、飞行器技术的发展,真空环境实验、特别是航天器真空热试验成为一项非常重要的试验验证工作,其中真空环境下某些基本参数的测量尤其是温度的测量成为上述研究的关键测试技术。但是到目前为止,航天器真空热试验中温度的测量基本上还是采用传统的接触式测温技术,其中热电偶温度测量系统应用十分普遍,但随着航天科学技术的发展,传统的热电偶测温技术越来越不满足航天器真空热试验的需要,如热电势信号很小,当信号采集处理单元安装在真空室外,连接测量点和信号处理单元间的热偶电缆又比较长,噪声就会对高精度的测量产生不利影响.同时由于真空热试验的温度场比较复杂,测量线路的材料和工艺如得不到正确的处理,就会有附加热电势的干扰;其次,航天器真空热试验中需要的热电偶的数量非常庞大,不仅给实验带来困难,而且热电偶线的热损失也会降低温度测量的精度; 再次,从物理的角度分析,在高真空环境下采用热电偶测量温度存在着诸多问题,如在压力较大情况下,传热方式主要有对流、热传导和福射三种。但是在压力接近真空状态下,对流和热传导的作用基本不存在,此时对工件、热电偶起升温作用的主要是辐射,辐射反映的是分子转动(对应转动温度)和振动(对应振动温度)的热运动情况,而热电偶的校准工作一般是在常压下进行,因此标定的温度是分子做热运动的平动温度,即经典热力学温度,尽管分子的转动温度和平动温度时刻保持平衡,但上述现象表明当采用常压下标定的热电偶测量真空环境的温度存在着不可预知问题。因此发展先进的、准确的、有效的温度测量技术有着明确的、长远的、重大的民用和军事应用背景,可以为解决航天器真空热试验提供有效的技术途径和工程数据。在地面模拟空间热环境试验中,相关部位的温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要采用温度传感器进行测量,主要应用T型铜-康铜热电偶系统,以钼电阻和热敏电阻进行比对。在空间热环境模拟实验中,主要采用热电偶、钼电阻和热敏电阻作为传感器进行温度测量,其校准、 溯源均在常压下实现。但在真空环境下,温度传感器材料特性及传热过程都发生变化,热真空试验的温度场分布十分复杂,因此为保证温度测量的准确性,空间温度测量及校准技术有待进一步研究。TDLAS 技术(Tunable Diode Laser Absorption Spectroscopy,可调谐二极管激光吸收光谱技术)是光谱学遥感技术的一种,主要用来测量气体的温度和浓度, 是当前痕量气体、污染性气体在线检测技术的发展方向和技术主流。TDLAS技术具有很强的选择性、高灵敏度、高光谱分辨率、系统通用性等优点,可以实现气体温度和浓度的高精度在线测量。尽管TDLAS技术在气体温度和浓度测量中取得了重大的进展,实现了多种环境下气体温度和浓度的高精度在线测量,但令人遗憾的是,目前TDLAS技术研究主要针对具体的工程应用,其研究的压力范围一般集中在0. IkPa IOOOkPa范围内,很少有科研工作者尝试测量高真空环境下气体的温度和浓度,造成这方面的原因主要有以下两点一是目前TDLAS技术主要针对具体的工程应用,而工程应用一般很少涉及到极低压力条件;二是 TDLAS技术是通过分析气体对激光的吸收情况得到气体的温度和浓度,但在真空环境下,单位体积内气体的分子数很少,以致吸收信号很弱而不利于实验测量。但近几年来,随着实验水平的进步,尤其是光学谐振腔技术的应用,使得测量极低压力条件下气体的温度和浓度成为可能。
技术实现思路
本专利技术针对现有技术中存在的缺陷或不足,提供一种空间真空环境下的温度测量与校准平台。采用所述平台有利于解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准,从而服务于卫星、飞船等航天器的热真空、热平衡试验。本专利技术的技术方案如下空间真空环境下的温度测量与校准平台,其特征在于,包括恒温槽,所述恒温槽内设置有双子真空腔,所述双子真空腔包括第I真空腔体和第2真空腔体,所述第I真空腔体和第2真空腔体通过三通连接真空抽取装置,所述第I真空腔体的外壁上和所述第2真空腔体的外壁上均设置有标准温度计传感器,所述标准温度计传感器连接温度二次仪表;所述第I真空腔体的真空腔中设置有激光光路反射装置,用于校准基于可调谐二极管激光吸收光谱技术的非接触式测温系统;所述第2真空腔体的真空腔用于容纳温度传感器,以校准采用所述温度传感器的接触式测温系统。所述激光光路反射装置包括位于第I真空腔体空腔上端的反射镜面和位于第I真空腔体空腔下端的反射镜面,所述第I真空腔体空腔上端设置有激光输入的光纤入口和经过一定次数反射后的激光输出的光纤出口。所述温度传感器安装在第2真空腔体的内壁上,所述温度传感器连接温度二次仪表。所述恒温槽采用液氮槽、酒精槽、水槽或油槽。所述真空抽取装置包括机械泵、分子泵、插板阀和电磁阀,所述机械泵、分子泵和插板阀依次连接,所述插板阀通过三通连接所述双子真空腔,所述电磁阀并联于所述分子泵和插板阀。所述第I真空腔体和第2真空腔体均采用紫铜材料。所述第I真空腔体的外壁上和所述第2真空腔体的外壁上均设置有环形空间,所述环形空间的底部与所述外壁连接,所述环形空间的上部连通大气,所述标准温度计传感器位于所述环形空间内。所述光纤出口连接光电探测器,所述光电探测器连接数据采集处理装置;所述光纤入口连接激光器,所述激光器连接激光控制单元,所述激光控制单元接收信号发生器和锁相放大器的混合信号。本专利技术技术效果如下本专利技术涉及真空环境下的温度测量与校准技术,能够解决真空下温度测量的溯源问题,实现接触式测温与非接触式测温的同时校准。专利技术人通过开展温度传感器技术在真空下的温度测量和校准技术研究,研究真空环境下的传热机理,建立一套真空环境下的温度校准平台,为空间温度测量装置的研制、试验、校准提供保障。同时基于可调谐二极管激光吸收光谱技术(TDLAS),通过TDLAS技术对真空环境下痕量气体(空气或特定气体,如 CO2)的温度进行测量,以验证传统的温度传感器测量技术的可靠性和精度,并在此基础上发展一种全新的、高精度的、基于TDLAS技术的真空环境温度测量技术,使两种方法形成比较和互补。本项目的完成拟解决温度传感器在常压和真空下测量结果差异大的问题,直接服务于卫星、飞船等航天器的热真空、热平衡试验。在地面模拟空间热环境试验中,相关部位的温度测点所在的位置可分为航天器温度和实验设备温度两部分。目前这些部位的温度测量主要采用温度传感器本文档来自技高网...
【技术保护点】
【技术特征摘要】
【专利技术属性】
技术研发人员:贾军伟,张书锋,
申请(专利权)人:北京东方计量测试研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。