本发明专利技术提供一种光子计数全谱直读发射光谱仪,主要由激发装置、分光系统、光子计数成像探测器以及信息处理及显示构成:激发装置提供能量激发样品产生特征发射光谱;分光系统将包含特征发射光谱的入射复合光色散成光谱强度分布图像;光子计数成像探测器通过位敏探测和光子计数以数字化的方式重构光谱强度分布图像;信息处理及显示根据数字光谱强度分布图像中每一像元的位置和光强对样品进行定性定量分析。本发明专利技术结合了光子计数和“全谱直读”两大技术优势,不仅检出限低、读数精度高、数据稳定性好以及线性动态范围大,还可同时分析多种物质成分、可充分利用工作波长范围内的每一条谱线、工作速度快、结构简单以及运行稳定性好。
【技术实现步骤摘要】
本专利技术涉及一种全新的发射光谱仪,即一种基于“光子计数成像探测器”的光子计数全谱直读发射光谱仪。本专利技术特别适用于原子(元素)、分子、离子以及其它物质成分的痕量或超痕量分析,可广泛的应用于环境监测、食品安全、生物光学、冶金化工、地质勘探以及医药卫生等众多行业与学科
技术介绍
发射光谱是指处于激发态的原子或分子跃迁到基态或较低激发态时产生辐射,辐射的强度按频率或波长分布的集合。研究发射光谱的特征和规律可以了解原子或分子的能级结构、运动状态以及原子或分子同电磁场或粒子相互作用的性质。按照是否存在外界激发过程,发射光谱可分为自发辐射谱和受激辐射谱两种1)自发辐射是指处于高能级&上的原子或分子自发的跃迁到低能级E1上,并伴随辐射出一个频率为ν的光子,hv = E2-E1,式中h为普朗克常量。由于自发辐射的无序性, 自发辐射谱多为连续谱。幻受激辐射是指受外界能量的激发,处于高能级氏上的原子或分子跃迁到低能级 E1I,并伴随辐射出一个频率为ν的光子,Iw = E2-E1= ΔΕ,式中ΔΕ为外界激发能。由于受激辐射的相干性,原子的受激辐射谱为线状谱,分子的受激辐射谱为带状谱。激发方式主要有光激发、电激发、热激发、化学反应、场激发以及碰撞激发等方式,能量载体主要有光辐射、电弧、电火花、热辐射、等离子体、化学能、电磁波、声波以及高能粒子等载体。发射光谱法便是利用原子或分子的上述特性对物质进行定性、定量以及结构分析,相应的分析仪器称为发射光谱仪。按照所使用探测器的类型及其信号处理方式的不同, 发射光谱仪可分为“电荷积分法”与“光子计数法”两大类1)电荷积分法是通过测量不断存储累积的电子或空穴的电荷量来反演入射光的强度,即“测电流”的方式,这也是传统发射光谱仪采用较多的一种方法。相应的探测器以电荷耦合器件(CCD/Charge Coupled Device)、电荷注入器件(CID/Charge Injection Device)、光电二极管(PD/Photo Diode)以及光电二极管阵列(PDA/Photo Diode Array) 等为典型代表。2)光子计数法则是将光辐射看成是由一个接一个单个的光子组成的光子流,通过对光子的计数(即脉冲计数)来反演入射光的强度。传统所用探测器以光电倍增管(PMT/ Photomultiplier Tube)和雪崩光电二极管(APD/Avalanche Photodiode)为典型代表。值得一提的是PMT和APD同样可工作于“电荷积分”模式,传统的发射光谱仪大都采用的是这种方式。此时,只是把PMT和APD当成一个单纯的高增益、高灵敏度的“电荷积分器”在使用。与电荷积分法相比,光子计数法具有以下优点1)极高的信噪比与极低的背景噪声由于光子计数法采用的是脉冲计数方式,当脉冲幅度低于一定的阈值时不予计数,因此可滤除掉大多数的噪声,具有非常高的信噪比。光子计数法的背景噪声主要来源于探测器的暗计数。工作于光子计数模式下的探测器的暗计数非常小(尤其是基于MCP的光子计数成像探测器,通常小于lcoimt/s -cm2), 故光子计数法具有极低的背景噪声。2)极高的探测灵敏度与极低的辐射通量下限由于光子计数法可探测到单个的光子,因此其探测灵敏度非常高,相应的辐射通量下限也非常低,通常可达到10_18W/Cm2甚至更低。3)无漏电流影响与良好的抗漂移性由于光子计数法采用的是脉冲计数方式,因此其最大的优点就是不受漏电流或是暗电流的影响,具有良好的抗漂移性,避免了电荷积分法中放大器的零点漂移与增益漂移以及探测器的暗电流等诸多困扰数据稳定性的难题。4)无信号溢出现象和极宽的动态范围由于光子计数法采用的是脉冲计数方式,不受常规光电转换过程中“信号溢出”现象的影响,且其辐射通量下限非常低,辐射通量上限只受限于最大计数率(通常在 IO5-IO6Hz之间),因此其动态范围非常宽,通常能达到IO4-IO5左右。通常,评价一台发射光谱仪的好坏主要是看其“检出限”(灵敏度)、“数据稳定性”(重复精度或重复误差)、“读数精度”以及“线性动态范围”等技术指标。通过上述的对比分析,不难看出采用光子计数法,上述指标都能得到大幅提升1)由于光子计数法的灵敏度非常高,甚至可探测到单个的光子,因此光子计数法的“检出限”更低,可进行痕量(或超痕量)分析。2)由于光子计数法的信噪比非常高,可探测到非常微弱的谱线强度变化,因此采用光子计数法进行定量分析的读数精度更高。3)由于光子计数法不受探测器漏电流或是暗电流的影响,具有良好的抗漂移性, 因此光子计数法的数据稳定性更好,即重复精度更高、重复误差更小。4)由于光子计数法的动态范围非常宽,因此采用光子计数法可大为提高定量分析的线性动态范围。此外,由于光子计数法无需对探测器进行制冷,因此可相应的降低发射光谱仪的生产运行成本。根据是否设置波长扫描机构,发射光谱仪又可分为“扫描法”与“全谱直读法”两种1)扫描法需要设置波长扫描机构以扫描的方式“顺序”探测光谱强度分布,这也是传统发射光谱仪采用较多的一种方法。相应的探测器以PD、APD、PMT以及其它的“点(或方向)”探测器等为典型代表。2)全谱直读法又称成像法,其无需波长扫描机构便可直接“同时”探测光谱强度分布,相应的探测器以CCD、CID、PDA以及其它的“面阵(或线阵),,探测器为典型代表。波长扫描机构中步进电机和光学系统的成本是与其精密程度呈指数关系增长的, 且波长扫描机构越精密,其运行稳定性越差。故相对于扫描法来说,采用全谱直读法的发射光谱仪的优势体现在可同时分析多种物质成分、可充分利用工作波长范围内的每一条谱线、工作速度快、结构简单、运行稳定性好、生产运行成本相对较低以及升级调校方便等方通过上述
技术介绍
的介绍不难看出1)采用单纯的“电荷积分法”进行光谱分析的发射光谱仪(例如探测器采用CCD 或是CID或是PD阵列等),虽然可以达到“全谱直读”的目的,但是相应的“检测灵敏度”和 “数据稳定性”会受到相当大的限制,“读数精度”和“线性动态范围”也会受到一定的影响, 且存在较为严重的信号溢出问题。2)采用单纯的“光子计数法”以扫描的方式进行光谱分析的发射光谱仪(例如探测器采用PMT或是APD等),虽然相应的“检测灵敏度”和“数据稳定性”可以得到大幅提升,“读数精度”和“线性动态范围”也能得到一定的优化,但是无法实现“全谱直读”,无法拥有“全谱直读法”的诸多优势。在这以目前市售的“电感耦合等离子体(ICP/Inductively Coupled Plasma)发射光谱仪”为例分光系统大都采用的是基于“棱镜”和“中阶梯光栅” 组成的二维交叉色散分光装置;探测器大都采用的是面阵CCD或CID。因此,目前市售的ICP 发射光谱仪的优势主要体现在可同时分析多种物质成分、可充分利用工作波长范围内的每一条谱线、工作速度快、结构简单、运行稳定性好、生产运行成本相对较低以及升级调校方便等方面;缺点则主要表现在(与采用PMT的发射光谱仪相比)灵敏度不高、数据稳定性不好、读数精度一般、线性动态范围不宽以及易受信号溢出问题的影响等方面。
技术实现思路
本专利技术的目的是为构思和设计高灵敏度(低检出限)、高数据稳定性、高读数精度、大线性动态范围并可全谱直本文档来自技高网...
【技术保护点】
【技术特征摘要】
【专利技术属性】
技术研发人员:缪震华,张利,杨萍,黄涛,张庆,尹延静,文敏,刘敏敏,
申请(专利权)人:深圳市世纪天源环保技术有限公司,缪震华,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。