本发明专利技术涉及一种基于马尔科夫链的电力系统负荷预测方法,已知值Lt-1的情况下,根据历史数据统计出下一时刻t的各种变化趋势,并统计其概率,最后以概率最大的一个趋势作为最终的预测结果,本发明专利技术的优点是负荷预测只用少量样本就可以进行,运行速度快,运算时间短,并且可以得出概率预测的结果。
【技术实现步骤摘要】
本专利技术涉及一种负荷预测方法,特别是针对于电力系统短期负荷预测的方法。
技术介绍
负荷预测是根据系统的运行特性、增容决策、自然条件与社会影响等诸多因素, 在满足一定精度要求的条件下,确定未来某特定时刻的负荷数据,其中负荷是指电力需求量(功率)或用电量;负荷预测是电力系统经济调度中的一项重要内容,是能量管理系统 (EMS)的一个重要模块。电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。城市民用负荷主要来自城市居民家用电器的用电负荷,它具有年年增长的趋势,以及明显的季节性波动特点,而且民用负荷的特点还与居民的日常生活和工作的规律紧密相关。商业负荷,主要是指商业部门的照明、空调、动力等用电负荷,覆盖面积大,且用电增长平稳,商业负荷同样具有季节性波动的特性。工业负荷是指用于工业生产的用电,一般工业负荷的比重在用电构成中居于首位,它不仅取决于工业用户的工作方式(包括设备利用情况、企业的工作班制等),而且与各行业的行业特点、季节因素都有紧密的联系,一般负荷是比较恒定的。农村负荷则是指农村居民用电和农业生产用电。此类负荷与工业负荷相比,受气候、季节等自然条件的影响很大,这是由农业生产的特点所决定的。农业用电负荷也受农作物种类、耕作习惯的影响,但就电网而言,由于农业用电负荷集中的时间与城市工业负荷高峰时间有差别,所以对提高电网负荷率有好处。从以上分析可知电力负荷的特点是经常变化的,不但按小时变、按日变,而且按周变,按年变,同时负荷又是以天为单位不断起伏的,具有较大的周期性,负荷变化是连续的过程,一般不会出现大的跃变,但电力负荷对季节、温度、天气等是敏感的,不同的季节,不同地区的气候,以及温度的变化都会对负荷造成明显的影响。电力负荷的特点决定了电力总负荷由以下四部分组成基本正常负荷分量、天气敏感负荷分量、特别事件负荷分量和随机负荷分量。电力系统负荷预测包括最大负荷功率、负荷电量及负荷曲线的预测。最大负荷功率预测对于确定电力系统发电设备及输变电设备的容量是非常重要的。为了选择适当的机组类型和合理的电源结构以及确定燃料计划等,还必须预测负荷及电量。负荷曲线的预测可为研究电力系统的峰值、抽水蓄能电站的容量以及发输电设备的协调运行提供数据支持。负荷预测根据目的的不同可以分为超短期、短期、中期和长期①超短期负荷预测是指未来1小时以内的负荷预测,在安全监视状态下,需要5 10秒或1 5分钟的预测值,预防性控制和紧急状态处理需要10分钟至1小时的预测值。②短期负荷预测是指日负荷预测和周负荷预测,分别用于安排日调度计划和周调度计划,包括确定机组起停、水火电协调、联络线交换功率、负荷经济分配、水库调度和设备3检修等,对短期预测,需充分研究电网负荷变化规律,分析负荷变化相关因子,特别是天气因素、日类型等和短期负荷变化的关系。③中期负荷预测是指月至年的负荷预测,主要是确定机组运行方式和设备大修计划等。④长期负荷预测是指未来3 5年甚至更长时间段内的负荷预测,主要是电网规划部门根据国民经济的发展和对电力负荷的需求,所作的电网改造和扩建工作的远景规划。对中、长期负荷预测,要特别研究国民经济发展、国家政策等的影响。对于负荷预测的方法,专利CN101706778A公开了基于⑶RE算法在负荷预测中的应用,CURE算法在负荷预测中的步骤(1)对负荷预测中的历史数据库中抽出数据样本; (2)对于每一分区,利用层次算法进行聚类;(3)对样本中的全部数据进行聚类,输入只包括各个分区独自聚类时发现的簇的代表性点。CN101299251A—种基于概率逆换算法的中长期电力负荷的预测方法,包括以下步骤1)基础数据的采集和改进根据行业数据库,给出行业负荷的初始数据表,并将点估计扩展成三段式区间估计;幻专家能力数据的生成与改进根据行业专业知识,将专家能力数量化并根据专家权重生成“虚拟专家”;3)实际数据与虚拟专家数据的整合根据虚拟专家数据,修正步骤1)中的区间估计;4)负荷预测与预测结果修正通过概率逆换算法反复将虚拟专家数据逆换到实际数据空间并加以比较修正,直到得到满意结果。这些方法取样量多,运算麻烦,时间长。
技术实现思路
本专利技术的目的是提供,该种方法负荷预测只用少量样本就可以进行,运行速度快,运算时间短,并且可以得出概率预测的结^ ο本专利技术采取的技术方案为马尔科夫链是数学中具有马尔可夫性质的离散时间随机过程。马尔科夫性质指的是设{(x(t),t e τ)}是一个随机过程,如果{(X(t),t e τ)}在t0时刻所处的状态为已知时,它在t > t0时刻的值只与其前一个值有关,则称{(X(t),t e τ)}具有马尔可夫性。设{(X(t), t e τ)}的状态空间为S,如果对于任意的η彡2,任意的、< t2〈… <tne τ,在条件X(ti) = Xi, Xi e S, i = 1,2,…,n-1下,X(tn)的条件分布函数恰好等于在条件X(V1) =Xlri下的条件分布函数,即P(X(tn) ( Xjxai) = Xi, X(t2) = x2, -,X(V1) = Xlri)= P (X (tn) ^ xn I X (tj = Xn^1)则称{(X(t),t e T)}为马尔可夫过程。负荷预测所依据的是历史负荷数据,历史数据则具有离散时间随机过程的特性。 负荷数据没有阶跃变化的特性,数据的在任意时刻的值Lt都是基于前一时刻Lh值的浮动, 因此可以将负荷曲线看作一条具有马尔科夫性质的曲线,这一条曲线所代表的离散时间随机过程就可以认为是马尔科夫链。基于马尔科夫链的基本思想,本专利技术,包括步骤如下(1)取5组以上的历史负荷数据,每一组都有t-Ι时刻的负荷数据Lw和t时刻的负荷数据Lt ;(2)对Lh和Lt的值域做状态划分,并设定状态集合E = {1,2,…,N},1<N < +⑴,状态划分规则是1状态表示负荷为0 100之间的数值,2状态表示负荷为100 200之间的数值,以此类推。由状态集合的定义可知,Lt^1和Lt都可以映射为状态集合中的某一个状态值。假设t-Ι和t时刻的状态取值分别为Ct_i和Ct,贝IJ AC = Ct-CV1即是在这一组数据中的状态转移距离,计算出的每组历史数据的状态转移距离之后就可以得到状态转移表。(3)统计状态转移表中各转移距离发生的概率,并且将得到的概率结果按照转移距离升序排列,得到一个一维矩阵,这个称为转移矩阵。(4)若得到的转移矩阵为F= [ai; a2,…an],并且…的值最大,其中1 < j < η。 根据转移矩阵的定义可知,Bj最大表示其所代表的转移距离在历史数据中发生的概率最大,不妨假设其所代表的转移距离为j。待预测时刻为t,t-Ι时刻的值为已知,并且可将t-1 时刻的值映射至状态集合E中的某个状态C,则预测t时刻的值映射至状态集合E的状态值为C+j。根据预测的状态值,可以得到其代表的值域范围,将这一值域范围的中点作为预测值。待预测的负荷值Lt只与前一时刻的值Lh相关,根据LH的值和历史数据归纳出的变化趋势来进行预测。在已知值Lh的情况下,根据历史数据统计出下一时刻t的各种变化趋势,并统计其概率,最后以本文档来自技高网...
【技术保护点】
【技术特征摘要】
1.一种基于马尔科夫链的电力系统负荷预测方法,包括步骤如下(1)对实测数据进行分析处理,取5组以上的历史负荷数据,每一组都有t-Ι时刻的负荷数据Lh和t时刻的负荷数据Lt ;(2)对Lh和Lt的值域做状态划分,并设定状态集合E={1,2,…,N},其中1状态表示负荷为0 100之间的数值,2状态表示负荷为100 200之间的数值,以此类推,设t-1 和t时刻的状态取值分别为C^1和Ct,则AC = Ct-C^1即是在这一组数据中的状态转移距离,计算出的每组历史数据的状态转移距离得到状态转移表;(3)统计状态转移表中各转移距离发生的概率,并且将得到的概率结果按照转移距离升序排列,得到一个一维矩阵,这个称为转移矩阵F= [ai;a2,…an];根据转移...
【专利技术属性】
技术研发人员:李文升,
申请(专利权)人:山东电力集团公司青岛供电公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。