通过降低在由多个计量仪器测定超纯水的水质并进行监测时所需要的监测水量,来抑制超纯水制造装置的规模,并由此谋求装置成本的降低。在分取出从超纯水制造装置供给至使用点处的超纯水的一部分并对水质进行监测时,使超纯水通过将相异种类的水质测定计量仪器串联连结两级以上而成的监测装置,来对水质进行监测。由于使从由超纯水制造装置起至使用点处的供水配管所分取的超纯水,串联地通过串联地连接两级以上的相异种类的水质测定计量仪器,因此,通过使在这些计量仪器的水质测定中所需要的监测水共用,由此谋求监测水量的降低,其结果,抑制超纯水制造装置的规模,而能够谋求装置成本的降低。
【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及具有监测装置的超纯水制造设备和超纯水的监测方法,该监测装置对于由超纯水制造设备制造并被供给至使用点处的超纯水的水质进行监测。
技术介绍
超纯水在电子零件的洗净或表面处理等的各种用途中被使用。最近,在洗净水或液浸曝光水中使用少量的高纯度超纯水的需求,也有所增加。当将高纯度的超纯水供给至使用点处的情况时,一般而言,针对所供给的超纯水, 通过多个在线(online)计量仪器来对各种的水质进行监测,并一边始终对是否维持了纯度一事进行监视,一边进行供给。作为在此使用的计量仪器,可列举有比电阻计、微粒子计、 溶解气体浓度计、TOC计(总有机碳计)、过氧化氢浓度计、氧化硅计、硼计、蒸发残渣计、水温计等,并根据与超纯水的用途相对应的必要监视项目,而分别进行选择(例如,专利文献 1)。图2是表示设置有多个此种水质监测用的计量仪器的现有的超纯水制造设备的系统图,从配管10所送入的原水(一次纯水(primary pure water)等),经过储存槽1以及配管11而被供给至超纯水制造设备2处,并被超纯水制造设备2内的泵升压,再通过各种洁净机构(T0C除去、脱气、溶解离子除去、微粒子除去等)进行处理,而制造出超纯水。通过超纯水制造装置2制造出的超纯水,经过超纯水供水配管12被供给至使用点3处而被使用。此时,为了维持超纯水的纯度,供给比在使用点3处所使用的量更多量的超纯水,未使用的超纯水经过超纯水回送配管14被送回至储存槽1中,而作为原水再次利用,并形成循环路径。从超纯水制造装置2被供给至使用点3处的超纯水的一部分,通过从配管12所分支出来的监测水抽出配管13进行分取,并分别被导入至并联配置的各计量仪器(在图2 中,为微粒子计A、比电阻计B、硼计C、D0/DN(溶解氧/溶解氮)计D、氧化硅计E、T0C计F、 H2O2(过氧化氢)计G、蒸发残渣计H)中,来进行规定的水质项目的测定。结束了测定的监测排水从各计量仪器A H经过监测排水排出配管15排出至系统外。如图2所示,各种计量仪器对超纯水的水质测定,分别单独地进行,因而,对于各个计量仪器,将来自抽出配管13的超纯水作为监测水导入,而测定后的监测排水从各计量仪器被排出。关于在这些计量仪器的测定中所需要的监测水量,在各个计量仪器单体处,仅为数10 数lOOmL/min,但是,若监视项目越多,换言之,若所需要的超纯水的纯度越高,则监测计量仪器的数量越会增加,其结果,在水质监测中所需要的全监测水量也会增加。因此, 在仅使用少量的高纯度超纯水的情况下,也会有相比于供给至使用点处的超纯水量而监测水量反而成为更多的情况,在此种情况下,为了确保监测水量,需要将超纯水制造装置设为比原本的用途所需要的规模更大的规模,而导致装置成本增大。现有技术文献3专利文献专利文献1 日本特开平5-138196号公报
技术实现思路
专利技术所要解决的问题本专利技术是为解决上述现有技术的问题而提出,其目的在于提供一种超纯水制造设备以及超纯水的监测方法,通过降低在由多个计量仪器对超纯水的水质测定并进行监测时所需要的监测水量,来抑制超纯水制造装置的规模,由此实现装置成本降低。用于解决问题的手段第1形态的超纯水制造设备具有超纯水制造装置、将该超纯水制造装置所制造的超纯水供给至使用点处的供水配管和对从该供水配管所分取的超纯水的水质进行监测的监测装置,其特征在于,该监测装置具有相异种类的水质测定计量仪器,相异种类的水质测定计量仪器串联连结两级以上。第2形态的超纯水的监测方法,在第1形态中,其特征在于,所述监测装置具有包含有比电阻计的第1监测单元;将从由溶解气体浓度计、TOC计、过氧化氢浓度计、氧化硅计 (silica meter)、硼计、蒸发残渣计以及水温计构成的组中所选择的1种或2种以上的计量仪器并联连结而成的第2监测单元;将从所述第1监测单元所排出的监测排水的一部分导入至该第2监测单元中的移送配管;将该监测排水的剩余部分排出的排出配管。第3形态的超纯水制造设备,在第2形态中,其特征在于,所述监测装置还具有包含有微粒子计的第3监测单元,该第3监测单元与所述第1监测单元并联设置。第4形态的超纯水制造设备,在第2或第3形态中,其特征在于,具有将从所述排出配管所排出的监测排水作为所述超纯水制造装置的原水来进行循环的循环配管。第5形态的超纯水的监测方法是分取出从超纯水制造装置供给至使用点处的超纯水的一部分并对其水质进行监测的超纯水的监测方法,其特征在于,使所分取的超纯水通过监测装置来对水质进行监测,该监测装置是将相异种类的水质测定计量仪器串联连结两级以上而成的。第6形态的超纯水的监测方法,在第5形态中,其特征在于,所述监测装置具有 包含有比电阻计的第1监测单元;将从由溶解气体浓度计、TOC计、过氧化氢浓度计、氧化硅计、硼计、蒸发残渣计以及水温计构成的组中所选择的1种或2种以上的计量仪器并联连结而成的第2监测单元;将从所述第1监测单元所排出的监测排水的一部分导入至该第2监测单元中的移送配管;将该监测排水的剩余部分排出的排出配管。第7形态的超纯水的监测方法,在第6形态中,其特征在于,所述监测装置还具有包含有微粒子计的第3监测单元,该第3监测单元与所述第1监测单元并联设置。第8形态的超纯水的监测方法,在第6或第7形态中,其特征在于,将从所述排出配管所排出的监测排水,作为所述超纯水制造装置的原水来进行循环使用。专利技术的效果若依据本专利技术,则由于使从供水配管所分取的超纯水串联地通过串联连结两级以上的相异种类的水质测定计量仪器,因此,通过使在这些计量仪器的水质测定中所需要的监测水共用,由此谋求监测水量的降低,其结果,抑制超纯水制造装置的规模,能够谋求装4置成本的降低,其中,该供水配管是从超纯水制造装置起至使用点的配管。优选该监测装置具有包含有比电阻计的第1监测单元;将从由溶解气体浓度计、 TOC计、过氧化氢浓度计、氧化硅计、硼计、蒸发残渣计以及水温计构成的组中所选择的1种或2种以上的计量仪器并联连结而成的第2监测单元;将从第1监测单元所排出的监测排水的一部分导入至第2监测单元中的移送配管;将监测排水的剩余部分排出的排出配管 (第2、第6形态)。S卩,由于比电阻计在水质测定中需要比较多的监测水量,并且,就算是通过比电阻计进行水质测定,对监测排水的水质的影响也小,另外,对于溶解气体浓度计、TOC计、过氧化氢浓度计、氧化硅计、硼计、蒸发残渣计、水温计等的计量仪器,就算是使用从此种比电阻计所排出的监测排水,也能够进行稳定的测定,并且,相比于比电阻计,这些计量仪器在测定中所需要的监测水量也仅需要少量即可,因此,若是在上游侧设置比电阻计,并在比电阻计的下流测并列设置这些计量仪器,再将从比电阻计所排出的监测排水分配供给至这些计量仪器,而将剩余的监测排水排出,则有利于在各计量仪器的测定值的稳定化以及监测水量的降低。另一方面,为了谋求测定值的稳定化,优选微粒子计单独设置,因而,优选包含有微粒子计的第3监测单元与包含有比电阻计的第1监测单元并联设置(第3、第7形态)。在本专利技术的监测装置中,从包含有比电阻计的第1监测单元所排出的监测排水是纯度充分高的水,因此,优选将该监测排水中的并未被供给至第2监测单元的剩余的监测排水作为超纯水的原水来进行循环使用(第4、本文档来自技高网...
【技术保护点】
1.一种超纯水制造设备,具有:超纯水制造装置,供水配管,将该超纯水制造装置所制造的超纯水供给至使用点处,监测装置,对从该供水配管所分取的超纯水的水质进行监测;其特征在于,该监测装置具有相异种类的水质测定计量仪器,所述相异种类的水质测定计量仪器串联连结两级以上。
【技术特征摘要】
【国外来华专利技术】...
【专利技术属性】
技术研发人员:床嶋裕人,小林秀树,
申请(专利权)人:栗田工业株式会社,
类型:发明
国别省市:JP
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。