在峰值电流模DC/DC开关电源中,斜坡补偿技术提高了电流内环的稳定性和响应速度。本发明专利技术公开了一种基于开关电容电路的斜坡补偿电路,仅使用一个放大器同时实现了感应电压放大、斜坡补偿与感应电压求和的功能,并且补偿斜率可配置,大大简化了电路设计,降低了设计的电路对工艺的敏感性。本发明专利技术中的电路由可配置斜率斜坡产生源与开关电容加法放大器构成。
【技术实现步骤摘要】
本专利技术属于集成电路设计领域,应用于峰值电流模开关电源(DC/DC)电流内环的控制,具体涉及一种以开关电容电路为基础的集放大、可配置斜率斜坡补偿与求和功能为一体的电路结构。
技术介绍
在峰值型电流模DC/DC电路中,当开关周期内开启主功率开关管的占空比D大于 50%时,电感上微小的波动将导致电流环路产生次谐波振荡,从而使得整个控制环路失稳。 为了消除电流反馈环路中固有的次谐波振荡,需要改变电感电流上升或下降的斜率,即在上升斜率上叠加一个斜坡或者在下降斜率上减去一个斜坡,以稳定电流控制环路。在开关电源电路中,这种方法被称为斜坡补偿。斜坡补偿是解决峰值型电流模开关电源所固有的电流控制模式开环不稳定的重要手段之一。在设计开关电源斜坡补偿电路时,需要一种方便调节的斜坡补偿电路,以便在满足性能要求的范围内进行适当的斜坡补偿,消除当占空比大于50%时电流环路固有的次谐波振荡。为了保证开关电源在所有负载条件下均能有效消除次谐波振荡,实际电路中,常常在采样的电感电流上叠加一个固定斜率的斜坡补偿来保证系统稳定,该斜率一般由开关电源的最差工作情况确定。但是,当开关电源工作在轻载时,过量的斜坡补偿将会使得峰值电流模控制等价为电压模控制,降低了整个环路的响应速度。另一方面,还需要一种求和机制实现感应电压与斜坡补偿电压的求和,常见的求和功能的实现如图1所示。采样电路把功率管或者电感上的采样电流信号转换成电压信号,此感应电压与斜坡电压经过电压转电流转换电路,将转换后的电流进行求和,求和后电流流过电阻获得最终的电压信号并输入到脉宽调制(Pulse Width Modulator, PWM)比较器。常见的开关电源电路中,斜坡产生电路和感应电压放大电路分属于不同的电路环节,电压感应放大和斜坡产生常常需要经过一些电路环节的转换,如图1所示的电路需要经过电压转电流电路实现求和,并最终转换成PWM比较器所需要的输入信号。从信号处理的流程上看,上述方式中信号经过了较多的电路环节,无疑会加大电路设计的复杂性,而且随着温度和工艺参数的波动,控制信号的误差积累将会变得十分严重,影响电流环路的控制精度。
技术实现思路
在峰值电流模开关电源中,适当的斜坡补偿是保证峰值电流模开关电源电路电流环路稳定和快速环路响应的重要手段之一,降低感应电压和斜坡补偿电压求和电路对温度和工艺的敏感性,有利于提高控制电路的鲁棒性。但如前文所述,如果感应电压放大和固定斜坡补偿求和经过的电路环节较多,不但加大了电路设计的复杂性,而且减低了电路的鲁棒性。此外,轻载时固定的斜坡补偿斜率会造成过斜坡补偿,使得电流模控制转变成电压模控制,降低了整个环路的响应速度。针对这些问题,本专利技术利用开关电容加法放大电路进行感应电压与斜坡电压求和。在CMOS工艺中,开关电容电路有较好的工艺兼容性,且具有高精度的时间常数、良好的电压线性度、良好的温度特性等优势,常常使用开关电容电路对信号进行采样和处理,电路精度只与电容的比值有关,从而能有效的提高信号处理的精度并降低电路对工艺的敏感性。基于上述技术,本专利技术提出了一种斜率可配置的斜坡补偿与求和技术,主要的技术点体现在如下三个方面1.利用开关电容加法放大电路对功率管电流或者电感电流形成的感应电压进行精确比例放大;2.利用开关电容电路产生斜坡,同时实现感应电压与斜坡补偿电压的求和;3.利用可配置开关组选择不同斜坡补偿电流,在不同的负载条件下得到最合适的斜坡补偿斜率。基于上述三点考虑,并重点关注在大的温度和工艺波动的情况下,降低敏感程度, 加强整体控制电路的鲁棒性,利用开关电容电路产生可配置的斜坡信号与感应信号进行精确求和。如图2中的电路结构,其中支路1进行感应电压放大,支路2进行斜坡补偿信号生成,最后经过运放对两路信号求和输出。本专利技术的优势体现在如下三个方面1.利用开关电容电路在CMOS工艺下有较强的电路鲁棒性,在存在大温度和工艺参数波动的情况下保证了求和电路的稳定性和求和精度要求;2.使用开关电容电路进行斜坡产生及求和的实现,不仅提高了求和精度,而且大大简化了电路结构;3.在不同负载条件下,通过可配置开关选择斜坡补偿斜率,优化环路响应速度。 附图说明图1典型的感应电压与斜坡补偿信号求和电路;图2本专利技术公开的斜率可配置的斜坡补偿与求和电路;图3本专利技术公开的斜率可配置的斜坡补偿与求和电路的复位状态;图4本专利技术公开的斜率可配置的斜坡补偿与求和电路的求和状态;图5使用本专利技术公开的开关电容求和电路的实际输出效果。具体实施例方式以下结合附图,详细说明本专利技术公开的斜率可配置的斜坡补偿与求和电路的结构和工作过程。本专利技术公开的斜率可配置的斜坡补偿与求和电路由二个部分构成,分别为开关电容加法放大器电路、可配置斜率斜坡产生电路,如图2所示。开关电容加法放大电路由电容(;、CS、C。、开关S2, S3、S4、S5、S6、S7、放大器OP组成, 其中开关&的一端连接电感电流的感应电压,开关&的另一端连接开关&和电容Cs的一端,S3另一端接电源,Cs的另一端与运放OP的反相输入端、Cr的一端、Cc的一端和、的一端连接,Cr的另外一端连接S1的一端和可配置开关组i5pl、Sp2,……、Spn的公共端,Cc的另一端连接开关&的一端,S5的另一端连接、的另一端、放大器的输出和开关S7的一端,S7 的另一端连接&的一端,S6的另一端连接运放OP的同相输入端,S6和S7的公共端作为整体电路的输出连接PWM比较器。斜坡补偿产生电路由开关S1、可配置开关组&i、Sp2,……、^和电流源Iri、 Ir2 >……、IrN组成,其中开的一端接电源,另一端连接可配置开关组知、&2、……、& 的公共端,开关Si、、、……5_的另一端对应的连接到电流源Iri、irt、……、irt的一端, 电流源Iri、Ir2、……、1_的另一端接地。在峰值电流模开关电源电路中,利用控制主功率开关管的开关信号实现开关电容电路在采样阶段和放大阶段之间的状态转换,即在主功率开关管导通阶段,开关电容电路进行感应电压放大和可配置斜率斜坡补偿求和;在主功率开关管截止阶段,开关电容进入采样状态,开关电容电路复位;因此,在一个开关周期内该开关电容电路可以实现感应电压放大与斜坡补偿求和双重功能。在下面分析中,将开关电容电路在功率管截止和导通时间段内进入的状态分别称为复位状态和求和状态。在电路的复位状态,图2中开关S^S3A4A6闭合,开关&、S5、S7断开,此时电路可以简化为图3所示的电路结构。此时,电容(;、Cs的左极板接电源,电位为电源电压VDD,运算放大器OP构成单位增益放大器,根据放大器输入端“虚短”的特性,Va电压等于放大器正向端的参考电压。此时放大器输出即PWM比较器的输入等于正向端参考电压,此电压为后续电路提供合适的直流工作点。当电路处于求和状态时,图2中开关&、55、57闭合,开关51、53、54、&断开。此时电路可以简化为图4所示的电路结构。不妨假设Iri、Irt、……、Irt各支电流相等,η为所选闭合的配置开关数,根据负载条件选择配置可配置开关组,可配置斜率斜坡产生源的总电流如所示。根据叠加定理,两个电容Cs、(;所在的本文档来自技高网...
【技术保护点】
1.一种电路结构,包括:开关电容电路具有高精度的时间常数、良好的电压线性度、良好的温度特性等优势,应用于采样电路,能大大提高电路采样信号的精度;本专利技术公开的斜坡补偿与求和电路可以同时实现可配置斜坡补偿斜率生成、感应电压放大以及感应电压与斜坡补偿电压求和的功能,简化了电路的设计,同时开关电容电路的使用也降低了电路对工艺的敏感性并提高了控制信号的精度;具体的电路包括开关电容加法放大器电路、可配置斜率斜坡产生源电路两个部分,开关电容加法放大器电路由运算放大器(OP)、电容(Cr、Cc、Cs)、开关(S2、S3、S4、S5、S6、S7)组成,开关(S2)的一端接电感的采样电压(Vsense),开关(S2)的另一端连接电容(Cs)的一端和开关(S3)的一端,开关(S3)的另一端连接电源,电容(Cs)的另一端连接放大器(OP)的反相输入端、电容(Cr)的一端、电容(Cc)的一端以及开关(S4)的一端,电容(Cr)的另一端连接开关(S1)的一端和可配置开关组(Sp1、Sp2、……、SpN)的公共端,电容(Cc)的另一端连接开关(S5)的一端,开关(S5)的另一端连接开关(S4)的另一端、放大器(OP)的输出和开关(S7)的一端,开关(S7)的另一端连接开关(S6)的一端,开关(S6)的另一端连接放大器(OP)的同相输入端和参考电压(Vref)输入,开关(S6)和开关(S7)的公共端作为整体电路的输出连接PWM比较器;可配置斜率斜坡产生源电路由开关(S1)、可配置开关组(Sp1、Sp2、……、SpN)、电流源(Ir1、Ir2、……、IrN)组成,其中开关(S1)的一端连接电源,另一端连接开关加法放大器中电容(Cr)的一端和可配置开关组(Sp1、Sp2、……、SpN)的公共端,可配置开关组(Sp1、Sp2、……、SpN)中各个开关的另一端对应的连接到电流源(Ir1、Ir2、……、IrN)的一端,电流源(Ir1、Ir2、……、IrN)另一端接地。...
【技术特征摘要】
【专利技术属性】
技术研发人员:李少青,邝继顺,吴了,张民选,张明,何小威,孙岩,乐大珩,
申请(专利权)人:中国人民解放军国防科学技术大学,
类型:发明
国别省市:43
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。