本发明专利技术公开了一种车牌定位方法和装置,用于智能交通领域,以解决现有车牌识别中对车牌结构信息的提取不能准确高效,从而不能进行准确的定位车牌的问题,本发明专利技术实施例基于双抛物线阈值的二值化技术对车牌结构信息进行提取,不需要每次利用全局信息求取阈值,提高了效率,同时能使各种复杂情况下的图像被二值化后,使车牌区域结构信息被完整保留并凸显,非车牌区域结构被抑制,最终使得车牌区域被准确的定位,相对其它二值化方法更鲁棒更高效,从而保证车牌识别最终的正确率。
【技术实现步骤摘要】
本专利技术涉及智能交通领域,尤其涉及一种车牌定位方法及车牌定位装置,具体更为一种基于双抛物线阈值法的二值化技术进行的车牌定位方法及车牌定位装置。
技术介绍
在智能交通领域,车牌识别是一项十分重要的技术。车牌识别技术一般包括车牌定位,车牌字符切割,字符识别几个过程,其中车牌定位的速度与精度,直接影响车牌识别技术的好坏,是整个车牌识别系统中的关键。车牌定位通常利用车牌的结构信息,通过全局搜索的方式对车牌所在区域进行定位,而车牌结构信息的提取,最常用也是较有效的方法是通过二值化技术来提取车牌图像的边缘。但常用的二值化方法,如固定阈值法、自适应阈值法、全局阈值法以及局部阈值法等不能适应复杂多变的环境,如不同天气、不同车况环境等复杂情况下对车辆结构信息的提取,固定阈值法或常用的自适应阈值法常导致二值化后的边缘图像中车牌区域基本上消失或引入大量噪声,这将导致定位失败,或产生大量假牌,后续处理的计算量大大增加。因此不能满足实际应用中高效性、实时性的需求例如,在智能交通领域的车牌识别技术中,由于天气、光照、道路、背景干扰客观因素的影响,采集的交通图像场景复杂多变,现有的二值化技术存在以下缺点1、容易丢失车牌区域的边缘信息,使车牌区域不能被定位到而丢失;2、容易引入过多的背景噪声,导致大量的伪车牌被定位到,从而增加后续处理的负担;3、难以满足实时性要求。以上因素严重影响了车牌定位的速度和精度,因此,提出一种能够满足实际应用需要的、实现各种复杂环境下的实时车牌定位技术显得十分必要,即一种更加鲁棒的二值化阈值方法,能够适应各种情况下二值化需求,使车牌区域的梯度得以凸显,同时减少非车牌区域出现干扰,从而使得车牌搜索更加高效。
技术实现思路
本专利技术实施例的目的是针对现有的车牌定位技术存在的不足,提出一种新的车牌定位方法及车牌定位装置,解决现有的车牌定位技术不能适应复杂多变的环境对车辆结构信息的提取,以及难以满足智能交通的实时性要求。为了达到上述专利技术目的,本专利技术实施例提出的一种车牌定位方法是通过以下技术方案实现的一种车牌定位方法,所述方法包括选取交通环境下的车牌图像,并以模板卷积的方式计算车牌图像的平均灰度图和垂直Sobel边缘图,所述车牌图像包含车牌区域和背景区域;将所述车牌图像的每个像素点的平均灰度和垂直Sobel梯度构成的二维点投影到二维坐标系中,并将车牌区域的点和背景区域的点分别标记;在所述二维坐标系中的车牌区域和背景区域的分界线上寻找关键位置点,并对所述关键点进行二阶线性方程拟合,得到两条抛物线;提取目标车牌图像中的像素点的平均灰度值和垂直Sobel梯度值,将平均灰度的值代入两个抛物线方程得到抛物线的值,当该Sobel梯度值大于任一条抛物线的值时,所述像素点的结构信息有效,否则所述像素点的结构信息无效。为了实现前述专利技术目的,本专利技术实施例还提出了一种车牌定位装置,所述车牌定位装置是通过以下技术方案实现的一种车牌定位装置,所述车牌定位装置包括图像选取模块,用来选取交通环境下的车牌图像,并以模板卷积的方式计算车牌图像的平均灰度图和垂直Sobel边缘图,所述车牌图像包含车牌区域和背景区域;图像投影模块,用来将所述车牌图像的每个像素点的平均灰度和垂直Sobel梯度构成的二维点投影到二维坐标系中,并将车牌区域的点和背景区域的点分别标记;抛物线拟合模块,用来在所述二维坐标系中的车牌区域和背景区域的分界线上寻找关键位置点,并对所述关键点进行二阶线性方程拟合,得到两条抛物线;二值化模块,用来提取目标车牌图像中的像素点的平均灰度值和Sobel梯度值, 将平均灰度的值代入两个抛物线方程得到抛物线的值,当Sobel梯度值大于任一条抛物线的值时,所述像素点的结构信息有效,否则所述像素点的结构信息无效。与现有技术相比,本专利技术实施例提出一种基于双抛物线阈值的二值化技术的车牌定位方法和装置,不需要每次利用全局信息求取阈值,提高了效率,同时能使各种复杂情况下的图像被二值化后,车牌区域被完整的保留并凸显,并且地面非车牌区域的结构被大大抑制,有效提取车牌图像中的车牌区域的结构信息,最终使得车牌区域被准确的定位,同时也减少了被检测到的假车牌数量,相对其它二值化方法更鲁棒更高效,从而保证车牌识别最终的正确率。附图说明通过下面结合附图对其示例性实施例进行的描述,本专利技术上述特征和优点将会变得更加清楚和容易理解。图1为本专利技术实施例一种车牌定位方法的流程图;图2为本专利技术实施例车牌图像的平均灰度模板和垂直Sobel模板;图3为本专利技术实施例一种车牌定位装置的组成示意图;图如为本专利技术实施例车牌和背景区域的灰度、梯度二维点投影图;图4b为本专利技术实施例标记分界线的关键点示意图;图如为本专利技术实施例拟合的曲线示意图。具体实施例方式下面结合附图对本专利技术作进一步详细说明。如图1所示,为本专利技术实施例一种车牌定位方法的流程图,所述方法包括选取交通环境下的车牌图像,并以模板卷积的方式计算车牌图像的平均灰度图和垂直Sobel边缘图,所述车牌图像包含车牌区域和背景区域;将所述车牌图像的每个像素点的平均灰度和Sobel梯度构成的二维点投影到二维坐标系中,并将车牌区域的点和背景区域的点分别标记。如图如,用正三角符号表示车牌区域像素的(灰度,梯度)二维点,用实心点符号表示非车牌区域像素的(灰度,梯度)二维点,图中箭头所示椭圆区域的点取值于强逆光天气的车牌区域,与逆光时高亮的背景区域特性相比具有较小的平均灰度和梯度,若使用全局阈值法二值化sobel图车牌区域结构信息容易丢失,而使用固定阈值法二值化sobel图,为了凸显车牌区域较弱的结构信息,阈值一般选取较小的值,这样会引入大量不必要的噪声,对车牌检测造成强烈的干扰;在所述二维坐标系中的车牌区域和背景区域的分界线上寻找关键位置点,如图 4b,用实心方块表示选取的关键点。并对所述关键点进行二阶线性方程拟合,得到两条抛物线,如图如中的两条抛物线;提取目标车牌图像中的像素点的平均灰度值和垂直Sobel梯度值,将平均灰度的值代入两个抛物线方程得到抛物线的值,当Sobel梯度值大于任一条抛物线的值时,所述像素点的结构信息有效,否则所述像素点的结构信息无效。进一步优选地,将所述车牌图像的每个像素点的平均灰度和垂直Sobel梯度构成的二维点投影到二维坐标系中,并将车牌区域的点和背景区域的点分别标记具体包括对所述车牌图像的每个像素点,从所述平均灰度图和Sobel边缘图中获取平均灰度和Sobel梯度构成R2空间中的一个点,并以平均灰度为横坐标,Sobel梯度为纵坐标,以不同符号表示车牌区域和背景区域的二维点;将所有车牌区域和背景区域的二维点投影到以灰度值为横坐标、梯度值为纵坐标二维坐标系中,并将车牌区域的点和背景区域的点分别标记。进一步优选地,所述对所述关键点进行二阶线性方程拟合,得到两条抛物线具体包括以平均灰度为自变量,垂直Sobel梯度为因变量,以最小二乘法对所述关键点进行二阶线性方程拟合,得到两条抛物线。本专利技术实施例针对现有方法对复杂情况下图像中车牌区域结构信息提取困难的问题,提出了一种基于双抛物线阈值的二值化方式,以有效提取复杂情况下的图像中的车牌区域的结构信息,从而保证车牌区域被准确的定位到,从而保证车牌识别最终的正确率。 为解决上述技术问题,本专利技术实施本文档来自技高网...
【技术保护点】
梯度值,将平均灰度的值代入两个抛物线方程得到抛物线的值,当该Sobel梯度值大于任一条抛物线的值时,所述像素点的结构信息有效,否则所述像素点的结构信息无效。成的二维点投影到二维坐标系中,并将车牌区域的点和背景区域的点分别标记;在所述二维坐标系中的车牌区域和背景区域的分界线上寻找关键位置点,并对所述关键点进行二阶线性方程拟合,得到两条抛物线;提取目标车牌图像中的像素点的平均灰度值和垂直Sobel1.一种车牌定位方法,其特征在于,所述方法包括:选取交通环境下的含有车牌的图像,并以模板卷积的方式计算车牌图像的平均灰度图和垂直Sobel边缘图,所述车牌图像包含车牌区域和背景区域;将所述车牌图像的每个像素点的平均灰度和垂直Sobel梯度构
【技术特征摘要】
【专利技术属性】
技术研发人员:李国,田广,梁龙飞,
申请(专利权)人:北京博康智能信息技术有限公司,
类型:发明
国别省市:11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。