本发明专利技术公开了一种纵向沟槽MOS器件的制备方法,其为在纵向沟槽MOS器件的沟槽形成之后,进行氮离子注入将氮离子注入到沟槽上部的侧壁;而在纵向沟槽MOS器件的接触孔刻蚀之后,进行离子注入工艺在接触孔下方形成接触孔注入区,接触孔注入区从体区延伸至漂移区内,接触孔注入区的导电类型与体区的导电类型相同。采用本发明专利技术的方法能提高所制备的纵向沟槽MOS器件的击穿电压。
【技术实现步骤摘要】
本专利技术涉及一种纵向沟槽MOS器件的制备方法。
技术介绍
纵向沟槽MOS是目前热门的功率器件,尽量低的正向导通电阻和尽量高的击穿电 压是器件设计和制造追求的目标。已有的一种纵向沟槽MOS器件结构如图1所示,其沟槽 侧壁下部和底部栅氧厚度大于两侧上部的栅氧厚度。这种器件中的沟槽制备方法为先刻 蚀沟槽,并在沟槽内依次生长氧化硅和氮化硅;接着刻蚀去除沟槽底部的氮化硅和氧化硅; 而后进一步进行沟槽刻蚀,使所得沟槽更深;紧接着为第二次所刻蚀的部分沟槽内壁局部 硅氧化,在沟槽底部和两侧壁下部形成厚的氧化硅层;最后去除氮化硅和部分氧化硅。具有 这种结构沟槽器件的击穿电压比一般结构的沟槽MOS晶体管的击穿电压要高。
技术实现思路
本专利技术所要解决的技术问题是提供一种纵向沟槽MOS器件的制备方法,它可以提 高纵向沟槽MOS器件的击穿电压。为解决上述技术问题,本专利技术纵向沟槽MOS器件的制备方法,为在纵向沟槽MOS 器件的沟槽形成之后,进行氮离子注入将氮离子注入到所述沟槽上部的侧壁表面;而在纵 向沟槽MOS器件的接触孔刻蚀之后,进行离子注入工艺在接触孔下方形成接触孔注入区, 所述接触孔注入区从体区延伸至漂移区内,接触孔注入区的导电类型与体区的导电类型相 同。本专利技术的方法中,将氮注入到沟槽上部,使得在进行栅氧化时,沟槽上部侧壁由于 氮的存在,生成氮氧化硅,而不是现有结构中的二氧化硅,氮饱和界面处的悬挂键,使得界 面态变少,提高载流子迁移率,从而降低正向导通电阻。同时通过接触孔注入区的存在,意 味着在飘移区引入PN结,利用PN结耗尽区分担更多的压降,从而达到提高器件击穿电压的 目的。附图说明下面结合附图和具体实施方式对本专利技术作进一步详细的说明图1为传统的纵向沟槽MOS器件的结构示意图;图2为采用本专利技术的方法所制备的纵向沟槽MOS器件的结构示意图;图3为实施本专利技术的方法中氮离子注入的示意图;图4为实施本专利技术的方法中氧化后的结构示意图;图5为实施本专利技术的方法中形成栅极多晶硅后的结构示意图;图6为实施本专利技术的方法中形成接触孔注入区后的结构示意图。具体实施例方式本专利技术的纵向沟槽MOS器件的制备方法,在纵向沟槽刻蚀完成后,光刻胶剥掉之 前,增加进行氮离子注入(见图3),使氮离子注入到沟槽上部的侧壁表面,而沟槽侧壁下部 和沟槽底部并没有氮离子注入。氮离子注入的沟槽侧壁的深度优选为大于后续形成的体区 的深度。在该步氮离子注入中,氮离子注入的剂量为为IO11 IO16原子/cm2,注入能量为 1 2000KeV,氮离子束与衬底垂直轴的夹角为0 90°。在氮离子注入后,剥掉光刻胶, 进行栅氧化。由于沟槽上部侧壁表面有氮存在,在栅氧化时,沟槽上部氧化速度较慢,形成 的是氮氧化硅;而沟槽下部侧壁和沟槽底部没有氮的存在,氧化速度会快,形成的是二氧化 硅。最终形成沟槽上部形成的氮氧化硅层较薄,沟槽下部和沟槽底部形成二氧化硅层较厚 (见图4)。之后对沟槽进行多晶硅填充,形成栅极多晶硅线条(见图5),作为MOS的栅极。而后通过常规工艺通过光刻和离子注入形成体区和源区,再淀积层间膜,接着通 过光刻和刻蚀形成接触孔,然后进行离子束注入在接触孔下方形成接触孔注入区(见图 6)。对于NM0S,源区进行N型掺杂,体区进行P型掺杂,接触孔注入区进行P型掺杂,漂移区 为N型外延,硅衬底为N型重掺杂外延硅片。对于PM0S,源区进行P型掺杂,体区进行N型 掺杂,接触孔注入区进行N型掺杂,漂移区为P型外延,硅衬底为P型重掺杂外延硅片。所 注入的离子种类可为磷(P),硼(B),二氟化硼(BF2),砷(As);注入离子的剂量为IO11 IO16原子/cm2,注入能量为1 2000KeV,氮离子束与衬底垂直轴的夹角为0 90°。采用标准的集成电路后道工艺形成晶圆正面的源极金属电极。晶圆背面淀积金 属,光刻刻蚀后形成漏极金属电极,最终形成如图2所示的纵向沟槽MOS器件。该纵向沟 槽MOS器件具有低正向导通电阻,更高击穿电压的功率MOS器件,因此改善了电路的总体性 能。权利要求1.一种纵向沟槽MOS器件的制备方法,其特征在于在所述纵向沟槽MOS器件的沟槽 形成之后,进行氮离子注入将氮离子注入到所述沟槽上部的侧壁表面;而在所述纵向沟槽 MOS器件的接触孔刻蚀之后,进行离子注入工艺在接触孔下方形成接触孔注入区,所述接触 孔注入区从体区延伸至漂移区内,所述接触孔注入区的导电类型与所述体区的导电类型相 同。2.根据权利要求1所述的纵向沟槽MOS器件的制备方法,其特征在于所述氮离子注 入的侧壁深度大于后续形成的体区的深度。3.根据权利要求1或2所述的纵向沟槽MOS器件的制备方法,其特征在于所述氮离子 注入的步骤中,所述氮离子的注入剂量为IO11 IO16原子/cm2,注入能量为1 2000KeV, 氮离子束与衬底垂直轴的夹角为0 90°。4.根据权利要求1或2所述的纵向沟槽MOS器件的制备方法,其特征在于所述形成接 触孔注入区的步骤中,注入离子的剂量为IO11 IO16原子/cm2,注入能量为1 2000KeV, 氮离子束与衬底垂直轴的夹角为0 90°。全文摘要本专利技术公开了一种纵向沟槽MOS器件的制备方法,其为在纵向沟槽MOS器件的沟槽形成之后,进行氮离子注入将氮离子注入到沟槽上部的侧壁;而在纵向沟槽MOS器件的接触孔刻蚀之后,进行离子注入工艺在接触孔下方形成接触孔注入区,接触孔注入区从体区延伸至漂移区内,接触孔注入区的导电类型与体区的导电类型相同。采用本专利技术的方法能提高所制备的纵向沟槽MOS器件的击穿电压。文档编号H01L21/28GK102130003SQ201010027318公开日2011年7月20日 申请日期2010年1月20日 优先权日2010年1月20日专利技术者沈今楷, 金勤海 申请人:上海华虹Nec电子有限公司本文档来自技高网...
【技术保护点】
1.一种纵向沟槽MOS器件的制备方法,其特征在于:在所述纵向沟槽MOS器件的沟槽形成之后,进行氮离子注入将氮离子注入到所述沟槽上部的侧壁表面;而在所述纵向沟槽MOS器件的接触孔刻蚀之后,进行离子注入工艺在接触孔下方形成接触孔注入区,所述接触孔注入区从体区延伸至漂移区内,所述接触孔注入区的导电类型与所述体区的导电类型相同。
【技术特征摘要】
【专利技术属性】
技术研发人员:金勤海,沈今楷,
申请(专利权)人:上海华虹NEC电子有限公司,
类型:发明
国别省市:31
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。