本实用新型专利技术公开了一种可调谐的预设空腔型SOI基片薄膜体声波谐振器,涉及一种频率可调谐的谐振器,包括带空腔SOI基片和设置其上的压电薄膜换能器,谐振器包括压电薄膜、底电极和顶电极,底电极靠预设空腔一侧设置有SOI调谐层,通过控制腐蚀时间控制SOI调谐层的厚度,带空腔SOI基片中的衬底硅片表面设置沟槽,键合后衬底硅片与顶层硅形成封闭的空腔结构;由于采用预设的空腔结构,本实用新型专利技术无牺牲层,无需国外专利及其产品中处理牺牲层采用的化学机械抛光工艺和牺牲层释放工艺,同时本实用新型专利技术综合了SOI材料所具有的源、漏寄生电容小和低电压低功耗等优点,本实用新型专利技术能与IC兼容,易于集成,工艺简单,适合批量生产。(*该技术在2021年保护过期,可自由使用*)
【技术实现步骤摘要】
本技术涉及一种薄膜体声谐振器,特别涉及一种频率可调谐的薄膜体声波谐振器。
技术介绍
薄膜体声波谐振器(FBAF)是一种利用声学谐振实现电学选频的器件,FBAF常见的结构是由若干个薄膜体声波谐振器(FBAR)单元经过电学级联构成。FBAR的基本工作原理为当电信号加载到FBAR上时,器件中的压电薄膜通过逆压电效应将电信号转变为声信号,器件特定的声学结构对不同频率的声信号呈现出选择性,实现频率调控的功能。快速发展的无线通讯技术(如移动通讯、无线传感网络)和雷达技术需要越来越多的高性能集成微波振荡器和双工谐振器,它们分别被用于信号源和射频前端的收发器中。 传统的射频谐振器主要有介质谐振器和声表面谐振器。介质谐振器虽具有插入损耗低,功率容量大的优点,但其缺点是体积过大,无法实现小型化设计。与介质谐振器相比,声表面谐振器可做得较小,但其受光刻工艺的限制,同时在高频率下难以承受高功率,且插损大。 最新发展起来的薄膜体声波谐振器技术可满足小型化和集成化设计的要求,且与传统谐振器相比,FBAF具有工作频率高、温度系数小、功率容量大、损耗低、体积小、可大批量生产、成本低且与半导体工艺兼容而可被集成于RFIC或MMIC中,被认为是最佳的CHz频率器件解决方案,可工作在500MHz到30GHz的频段内,在通讯和雷达方面具有很大的应用潜力,为将射频谐振器集成到芯片内开辟了新的途径。FBAR作为FBAF的基本单元,是FBAF性能形成的关键,迄今为止,实现FBAR有背腔薄膜型、空腔型和声学多反射层型谐振器三种,FBAR换能器的主要结构是金属电极-压电薄膜-金属电极构成的三明治结构,其中空腔型FBAR已经得到商业应用。世界上能生产FBAF及其相关产品的公司主要集中在美国和日本等发达国家,其中以美国Avago公司和日本的Fujitsu公司为典型代表。美国Avago公司是世界上最早制作出FBAR,也是世界上生产商用FBAF、双工器等产品技术最成熟的公司,其专利及其相关产品中采用的就是空腔型FBAR结构。空腔是FBAR性能形成的关键,制作方法相当复杂,其专利(US6060818, US6377137,US20050088257A1)中提到需要经过在硅片上浅槽刻蚀、在槽内填充牺牲层、CMP (化学机械抛光)抛光牺牲层以及最后牺牲层释放等关键工序,其关键工序容易存在以下难点(1)牺牲层较厚,厚度有数个微米,用镀膜的方式填充容易在镀膜过程中形成残余应力,对下一步牺牲层CMP抛光和牺牲层的释放造成影响;(2)在整个硅片表面(特别是大尺寸硅片)CMP抛除几个微米的牺牲层工艺非常复杂,精度也较难控制,对CMP设备精度和工艺人员的技术水平的要求相当高;(3)牺牲层的释放工艺也较复杂,考虑到牺牲层的体积和尺寸,释放所需时间较长,如果释放不完全,不能形成一个完整的空腔,就会造成器件失效,如果释放时间较长,牺牲层释放刻蚀液对换能器又会造成某种程度上的损伤;(4)在牺牲层释放过程中,空腔中还可能会出现粘连现象,直接影响了器件的成品率;(5)其五边形电极容易在边角处形成应力集中,这在US20080169885A1中已经得到证实。日本Fujitsu公司生产的FBAF产品结构比较多样,从其公司申请的相关专利来看,其FBAR的结构形式大致分两类背腔薄膜型(US7323953B2,US20080169885A1)和空腔型(US20100060384A1,US20100060385A1, US7345402B2 等),其中背腔型需要刻穿整个硅片厚度以形成腔体结构;最近他们提出的空腔型FBAR及其产品(US20100060384A1, US20100060385A1等),提到一种薄的牺牲层工艺以及在镀压电薄膜过程中对压电薄膜进行应力控制技术,使压电层及其电极在牺牲层释放后拱起,从而形成一个拱形空腔; US20080169885A1中提出一种可调频式FBAF,通过在顶电极上放置金属点阵质量块调节单个FBAR的谐振频率,达到调节FBAF频率的目的。Fu jitsu公司生产的FBAF产品存在以下难点(1)背腔型FBAR需要刻穿整个硅片厚度,对结构可靠性造成一定的影响;(2)拱形空腔对镀膜过程中的应力控制技术要求极高,不容易掌握;(3)在牺牲层释放过程中,牺牲层四周特别是上下表面全部被电极和硅片包围,全部释放出需时较长,牺牲层释放刻蚀液对换能器会造成某种程度上的损伤;(4)牺牲层边缘的台阶不够平滑,压电层及其电极的膜厚在此处发生畸变,会造成应力集中现象并导致换能器的断裂,并且在台阶处影响了 AlN (002)统一晶向的形成;(5)其可调式FBAF需要额外增加点阵质量块,增加了工艺过程。FBAR器件的谐振频率由其厚度确定,其厚度必须准确控制,以便具有期望的谐振器响应,但在FBAR器件加工过程中,容易出现加工偏差,使得加工后的谐振频率通常不同于目标值,谐振频率误差往往可使用激光微调技术来校正,在该技术中将激光朝向谐振器, 并且对谐振器去除或添加材料,由此将谐振器的谐振频率“调谐”到期望目标频率。然而, 由于谐振器大小非常小,所以传统的激光微调技术不是可行的方案。在FBAR电极形状设计方面,美国Avago公司FBAR (US7561009B2)采用多边形电极来抑制寄生振动模式,但日本Fujitsu公司在专利US20080169885A1中提出五边形电极容易在边角处形成应力集中;日本Fujitsu公司采用椭圆形(US2008(^84543)或椭圆环型 (US20080169885A1)型电极来改善FBAR的电性能;在谐振器电极形状方面,本专利申请人 Yang等(Yang et al, Applied Physics Letters, 2008; Yang et al, IEEE UFFC, 2009; CN101257^7)提出近似椭圆形电极有助于增强谐振器的能陷行为,抑制寄生振动,提高器件的Q值。因此急需一种具有调频功能,同时综合SOI材料所具有的优点,能与IC兼容,易于集成,工艺简单,适合批量生产的薄膜体声波谐振器。
技术实现思路
有鉴于此,为了解决上述问题,本技术提出一种具有调频功能,同时综合SOI 材料所具有的优点,能与IC兼容,易于集成,工艺简单,适合批量生产的薄膜体声波谐振O本技术的目的是提出一种可调谐的预设空腔型SOI基片薄膜体声波谐振器。本技术的目的是通过以下技术方案来实现的本技术提供的可调谐的预设空腔型SOI基片薄膜体声波谐振器,包括预设空腔型的SOI基片和设置在SOI基片上的换能器,所述换能器包括底电极、顶电极和设置在底电极与顶电极之间的压电薄膜,所述底电极与SOI基片相结合,所述底电极、顶电极和压电薄膜的叠加区域与预设空腔相对,所述底电极靠预设空腔一侧设置有SOI调谐层。进一步,所述SOI基片设置有衬底硅和顶层硅,所述衬底硅上设置有与顶层硅形成预设空腔的沟槽,所述沟槽深度为0. 5微米到200微米,所述SOI调谐层的厚度小于顶层硅的厚度。进一步,所述SOI基片设置有衬底硅和顶层硅,所述衬底硅和顶层硅之间设置第一二氧化硅层,所述第一二氧化硅层上设有沟槽,所述沟槽与顶层硅形成预设空腔。进一步,所述换能器上设置有使腐蚀液或腐蚀气体注入预设本文档来自技高网...
【技术保护点】
1.可调谐的预设空腔型SOI基片薄膜体声波谐振器,其特征在于:包括预设空腔型(8)的SOI基片和设置在SOI基片上的换能器,所述换能器包括底电极(9)、顶电极(11)和设置在底电极(9)与顶电极(11)之间的压电薄膜(10),所述底电极(9)与SOI基片相结合,所述底电极(9)、顶电极(11)和压电薄膜(10)的叠加区域与预设空腔(8)相对,所述底电极(9)靠预设空腔(8)一侧设置有SOI调谐层(13)。
【技术特征摘要】
...
【专利技术属性】
技术研发人员:杨增涛,马晋毅,冷俊林,杨正兵,赵建华,陈小兵,陈运祥,周勇,傅金桥,张龙,
申请(专利权)人:中国电子科技集团公司第二十六研究所,
类型:实用新型
国别省市:85
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。