本发明专利技术公开了一种基于增量改进BP神经网络的微波干燥PID控制方法,选用三层BP神经网络为原型,将增量学习、L-M优化算法、BP神经网络和PID控制相结合,实现了PID控制参数的在线整定。首先利用微波干燥过程的实际生产数据作为训练数据对神经网络进行离线系统辨识,将网络的输出值与实测值进行对比,直到网络训练的均方误差达到要求,确定网络各层的权值和阈值,再根据实际生产过程测定的被控对象参数作为神经网络的输入,进行在线动态整定PID控制参数,神经网络的输出即为PID控制器的参数Kp、Ki、Kd。
【技术实现步骤摘要】
本专利技术涉及一种基于增量改进BP神经网络动态实时整定微波干燥过程PID控制 器参数的方法,属于冶金工程计算机神经网络控制
技术介绍
公知的PID控制器结构简单,对模型误差具有鲁棒性强及易于操作等优点,被广 泛应用于冶金、化工、电力、轻工和机械等工业过程控制领域中。随着工业的发展,被控对象 的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,公知的PID控制技术 已经无法满足目标控制精确化的要求。BP神经网络以其任意非线性函数的任意逼近能力和 自学习能力,能够通过自身的学习过程了解系统的结构、参数、不确定性和非线性,并给出 系统所需的控制规律,在控制领域得到了广泛的应用。基于BP神经网络的PID控制对于不 确定性系统和参数变化且有时滞的被控系统,都表现出较好的自适应性和鲁棒性。公知的 BP算法是基于梯度下降法,通过计算目标函数对网络权值和阈值的梯度修正网络权值,在 训练过程中存在收敛速度慢和局部最小的问题;且对于复杂的问题,在训练过程中会陷入 局部最小点,以致无法收敛。采用LeVenberg-Marquardt(L-M)算法对BP神经网络加以改 进,提高了神经网络的收敛速度,同时针对在训练神经网络的过程中,无法一次性提供所需 的训练样本且当样本规模较大时,系统内存的限制使得对所有样本的训练不可行等问题, 提出基于增量学习的BP神经网络,在占用较小内存资源的情况下,选取具有代表性的样本 完成对网络的训练。本专利技术提出基于增量改进BP神经网络PID控制方法,可以有效地动态 实时整定PID控制器参数。
技术实现思路
本专利技术的目的在于针对公知的PID控制器无法满足复杂系统的目标控制精确化 要求,提出一种基于增量改进BP神经网络动态实时整定PID控制器参数的方法,选用三层 BP神经网络为原型,将增量学习、L-M优化算法、BP神经网络和PID控制相结合,实现了 PID 控制参数的在线整定,此方法综合了公知PID控制理论和增量BP神经网络的优势,可以有 效地整定PID控制器参数。本专利技术按以下步骤完成(1)数据采集选取实际生产过程的数据作为样本数据,包括微波输入功率、微波 作用时间、物料转速、物料相对脱水率和物料温度;(2)建立增量改进BP神经网络PID控制模型,并对网络进行训练和测试采用增 量学习和L-M算法对神经网络进行改进,并将实际生产的样本数据输入到网络中,对网络 进行离线系统辨识,将网络的输出值与实测值进行对比,直到网络训练的均方误差达到要 求,确定网络各层的权值和阈值;(3)实时控制根据微波干燥系统具有时变性、滞后性和非线性的特点,为方便控 制算法的研究,用被控对象数学模型,将微波干燥系统简化为一个带有纯滞后的一阶惯性环节,根据试验过程测定的被控对象参数作为神经网络的输入,对神经网络PID控制系统 进行离线系统辨识,实现在线动态整定PID控制参数,神经网络的输出即为PID控制器的参 数 Kp、Ki、Kd。与公知技术相比的优点及积极效果本专利技术提出了一种基于增量改进BP神经网络动态实时整定微波干燥 过程PID控制器参数的方法。选用三层BP神经网络为原型,采用增量学习和 Levenberg-Marquardt (L-M)算法对BP神经网络进行改进,首先利用微波干燥过程的试验 数据对神经网络进行离线系统辨识,将网络的输出值与实测值进行对比,直到网络训练的 均方误差达到要求,确定网络各层的权值和阈值,再根据试验过程测定的被控对象参数作 为神经网络的输入,进行在线动态整定PID控制参数,神经网络的输出即为PID控制器的参 数1^、K” Kd。本专利技术能够快速准确地整定PID控制器参数;能够克服在训练过程中存在收 敛速度慢和局部最小的问题,提高网络的收敛速度;能够通过自身的学习过程了解系统的 结构、参数、不确定性和非线性;可以有效地解决训练样本无法一次性提供的问题,选取具 有代表性的样本,在占用较小内存资源的情况下完成对网络的训练;具有较强的自适应能 力和泛化能力。附图说明图1为增量改进BP神经网络PID控制结构图,图中Kp、Ki、Kd分别为比例、积分、微 分系数;r(t)为系统的给定值;y(t)为系统的输出值;e(t)为系统实际输出和期望值之间 的误差;u (t)为PID控制器的输出。图2系统输出响应图,随着时间的增加,系统输出响应趋于稳定。图3PID控制器误差曲线图,随着时间的增加,PID控制器误差趋于稳定。图4PID控制器输出图,随着时间的增加,PID控制器输出趋于稳定。图5PID参数整定图,随着时间的增加,PID参数Kp、K” Kd趋于稳定具体实施例方式实施例基于增量改进BP神经网络动态实时整定微波干燥过程PID控制器参数的 方法,分以下三个步骤(1)数据采集选取实际生产过程的数据作为样本数据,包括微波输入功率、微波 作用时间、物料转速、物料相对脱水率和物料温度,并将样本数据归一化到0和1之间;(2)建立增量改进BP神经网络PID控制模型,并对网络进行训练和测试控制器 由两部分组成一是公知的PID控制器,用于直接对被控对象进行闭环控制,并且实现三个 参数Kp、Ki、Kd在线整定;二是增量改进BP神经网络,根据系统的运行状态,通过神经网络的 自学习和加权系数调整,从而调节PID控制器参数,达到某种性能指标的最优化。L-M算法 是一种利用标准的数值优化技术的快速算法,具有二阶收敛速度,既有牛顿法的局部收敛 特性,又有梯度下降算法的全局特性,能够解决BP神经网络学习收敛速度慢,容易陷入局 部最小的问题,以此改善神经网络的收敛速度和收敛性能。增量学习是根据先验知识设定 其权值表示知识的有效区间,权向量可以在保持所学知识准确性的情况下在该有效区间内 移动,当有新样本到来时,通过固定网络结构,在权值变化有效区间内调整权值,使表示空间逼近目标空间,从而学习到新样本的知识,同时由于权值调整限制在有效区间内,网络不 仅学习到了新样本的知识,而且保持了原有的知识。增量式PID控制算法u (t) =u (t-1) +Kp · +Ki · e (t) +Kd · (1)式中,Kp、Ki、Kd 分别为比例 Proportion、积分 htegration、微分 Differentiation 系数;r(t)为系统的给定值;y(t)为系统的输出值;e(t)为系统实际输出和期望值之间的 误差;u(t)为PID控制器的输出。BP神经网络输入层节点的输入为 O/1' = Xi(i = 1,2,3,4) (2) 输入层节点的输出为权利要求1. 一种基于增量改进BP神经网络的微波干燥PID控制方法,利用增量改进BP神经网 络映射PID控制器的控制参数,其特征是选取三层BP神经网络为原型,采用增量学习和 Levenberg-Marquardt (L-M)算法对BP神经网络进行改进,确定网络各层的权值和阈值,再 根据实际生产过程测定的被控对象参数作为神经网络的输入,神经网络的输出即为PID控 制器的参数Kp、Ki^Kd,包括如下三个步骤,(1)数据采集选取实际生产的数据作为样本数据,包括微波输入功率、微波作用时 间、物料转速、物料含水率和物料温度;(2)建立增量改进BP神经网络PID控制模型,并对网络进行训练和测试采用增本文档来自技高网...
【技术保护点】
一种基于增量改进BP神经网络的微波干燥PID控制方法,利用增量改进BP神经网络映射PID控制器的控制参数,其特征是:选取三层BP神经网络为原型,采用增量学习和Levenberg-Marquardt(L-M)算法对BP神经网络进行改进,确定网络各层的权值和阈值,再根据实际生产过程测定的被控对象参数作为神经网络的输入,神经网络的输出即为PID控制器的参数K↓[p]、K↓[i]、K↓[d],包括如下三个步骤,(1)数据采集:选取实际生产的数据作为样本数据,包括微波输入功率、微波作用时间、物料转速、物料含水率和物料温度;(2)建立增量改进BP神经网络PID控制模型,并对网络进行训练和测试:采用增量学习和L-M算法对神经网络进行改进,并将采集到的样本数据输入到网络中,对网络进行离线系统辨识,将网络的输出值与实测值进行对比,直到网络训练的均方误差达到要求,确定网络各层的权值和阈值;(3)实时控制:根据微波干燥系统具有时变性、滞后性和非线性的特点,为方便控制算法的研究,借鉴公知的被控对象数学模型,将微波干燥系统简化为一个带有纯滞后的一阶惯性环节,根据试验过程测定的被控对象参数作为训练完成的神经网络的输入,进行在线动态整定PID控制参数,神经网络的输出即为PID控制器的参数K↓[p]、K↓[i]、K↓[d]。...
【技术特征摘要】
【专利技术属性】
技术研发人员:彭金辉,李英伟,张彪,李玮,张世敏,郭胜惠,张利波,
申请(专利权)人:昆明理工大学,
类型:发明
国别省市:53
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。