基于神经网络系统的制粒机配方生成方法技术方案

技术编号:6547372 阅读:200 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供一种基于神经网络系统的制粒机配方生成方法,该方法包含以下步骤:1、采集神经网络的训练样本;2、仿真训练神经网络,确定神经网络的权值和阈值;3、神经网络自动采用原料参数生成生产配方。本发明专利技术通过神经网络技术设定制粒机的生产配方,以原料参数自动生成控制制粒机运作的生产配方输出量,不需要有经验的配方工程师以经验设定生产配方,提高产品性能和生产效率,同时提高配方设定的科学性和准确性。

【技术实现步骤摘要】

本专利技术涉及一种自动生产控制技术,具体涉及一种。
技术介绍
目前,制粒工艺的配方对制药产品的性能有着重要的影响。通常配方基本上依靠试验和工人的经验来获取,这就使得制药过程的设计有很大的盲目性。因此,用有效的模型来自动获取配方参数,不但可以提高产品的性能,而且提高生产效率。由于制粒工艺配方和制药过程的各项参数之间存在复杂的非线性关系,多数情况只能靠长期的试验摸索,由工人感觉得到,缺乏科学性和准确性,经验掌握周期长,也容易出现系统误差。神经网络(Neural Network,NN)是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理,具有容错、联想、推测、记忆、 自适应和自处理等特点,能较好的完成复杂输入和输出的非线性映射,并行处理能力强。在结构上,可以把一个神经网络划分为输入层、输出层和隐含层,如图2所示。输入层的每个节点对应一个个的输入变量,输出层的节点对应输出变量,可有多个。在输入层和输出层之间是隐含层(对神经网络使用者来说不可见),隐含层的层数和每层节点的个数决定了神经网络的复杂度。通过训练决定神经网络结构的隐含层极其所含节点的个数,以及节点之间的连接方式,建立输入变量和输出变量之间的非线性关系。因此神经网络特别适用于研究制粒参数和配方之间的非线性关系模型。经过现有技术的文献检索发现,目前尚无制粒机配方生成方法方面的专利文献。
技术实现思路
本专利技术公开了一种,能够根据原料的参数,自动获取制粒机生产配方,提高产品的性能和生产效率。为实现上述目的,本专利技术公开一种,其特点是,该方法包含以下步骤步骤1神经网络系统采集用于制粒机的神经网络的训练样本;步骤1.1现实的制粒机模拟运行;步骤1. 2系统设定制粒机运行的原料参数;步骤1. 3系统根据制粒机的运行过程,给出与原料参数相对应的配方参数; 步骤1. 4神经网络系统存储制粒机相对应的原料参数与配方参数,获得用于训练神经网络的训练样本;步骤2神经网络系统仿真训练用于制粒机的神经网络,确定神经网络的权值和阈值; 步骤2. 1神经网络系统导入训练样本中的各原料参数,作为神经网络的输入层神经元;步骤2. 2神经网络系统导入训练样本中的各配方参数,作为神经网络的输出层神经元;步骤2.3神经网络系统计算出隐层神经元的数目,隐层神经元数目N=训练样本数 /2+e, e随机取0到9之间的整数值;步骤2. 4神经网络系统利用训练样本对神经网络进行仿真训练,确定神经网络的权值和阈值;步骤2. 5神经网络系统正向传播输入层输入的训练样本原料参数,判断输出层的输出是否与导入输出层的训练样本的配方参数一致,若是,则跳转到步骤2. 8,若否,则跳转到步骤 2. 6 ;步骤2. 6神经网络系统反向传播误差,并进行学习,修改或迭代各层各节点的权重和阈值,减小代价函数;步骤2. 7神经网络系统判断代价函数是否能再减小,若是,则完成了输入层与输出层的映射,则跳转到步骤2. 6,若否,并跳转到步骤2. 8 ;步骤2. 8神经网络系统仿真训练完成,建立输入层神经元与输出层神经元之间的关系;步骤3神经网络系统应用,自动生成制粒机的配方; 步骤3. 1神经网络系统输入原料参数至神经网络输入层; 步骤3. 2神经网络系统对原料参数进行处理,输出层生成配方参数; 步骤3. 3神经网络系统输出神经网络生成的配方参数,控制制粒机运作。上述的步骤1. 3中的原料参数包含原料种类、原料密度、原料粒度、浆液粘度、浆液比例、浆液温度和亲水性。上述的步骤1. 3中的配方参数包含进风温度、出风温度、物料温度、总时间、风机频率、风阀开度。本专利技术一种和现有技术相比,其优点在于,本专利技术通过神经网络技术设定制粒机的生产配方,以原料参数自动生成控制制粒机运作的生产配方输出量,不需要有经验的配方工程师以经验设定生产配方,提高产品性能和生产效率,同时提高配方设定的科学性和准确性。附图说明图1为本专利技术的方法流程图2为本专利技术的神经网络的拓扑结构图; 图3为本专利技术的仿真训练方法的方法流程图。具体实施例方式以下结合附图说明本专利技术的具体实施方式。本专利技术说明了一种,能够根据原料的参数,自动生成制粒机的生产配方。以下结合图1和图3说明本专利技术一种, 该方法包含以下步骤。步骤1神经网络系统采集用于制粒机的BP神经网络的训练样本。步骤1. 1现实的制粒机模拟运行。步骤1. 2设定制粒机运行的原料参数。步骤1. 3系统根据制粒机及其流化床控制系统的运行过程,给出与上述设定的原料参数相对应的配方参数。步骤1. 4系统将用于控制制粒机运作的相对应的原料参数与配方参数一个个对应起来,并存储起来作为用于训练神经网络的训练样本。该训练样本包含制粒机所要处理原料的原料参数,以及与原料参数相对应的制粒机运作的配方参数。其中,原料参数包含原料种类、原料密度、原料粒度、浆液粘度、浆液比例、浆液温度和亲水性。配方参数是指进风温度、出风温度、物料温度、总时间、风机频率、风阀开度。步骤2神经网络系统导入上述获得的训练样本,对用于制粒机的BP神经网络进行仿真训练,确定神经网络的权值和阈值。如图2所示,神经网络包含输入层、隐层和输出层,输入层包含若干个输入参数,输出层包含若干个输出参数。神经网络的输入层、隐层与输出层之间的连接关系为拓扑结构。在进行仿真训练前,先设定一个阈值,如果代价函数大于这个阈值,则神经网络继续训练,小于等于这个阈值,说明代价函数不用再减小了。该阈值小,并说明训练样本输出的配方参数与训练得到的配方参数非常接近。步骤2. 1神经网络系统导入训练样本中的各原料参数至神经网络,每一个原料参数作为神经网络的一个输入层神经元,其神经元数目即训练样本中的各原料参数的数目。步骤2. 2神经网络系统导入训练样本中的各配方参数至神经网络,每一个配方参数作为神经网络的一个输出层神经元,其神经元数目即训练样本中的各配方参数的数目。步骤2. 3神经网络系统计算出神经网络隐层神经元的数目,神经网络的隐层神经元数目N=训练样本数Λ+e (e取0到9之间的整数值,该e的值由神经网络系统随机产生)。步骤2. 4神经网络系统利用上述训练样本来仿真训练基于制粒机配方生成的BP 神经网络,确定BP神经网络的权值和阈值。其中初始学习速率为0. 02,动量系统为0. 98, 网络的误差为0.01,采用带动量的批处理梯度下降法来训练BP神经网络,其仿真训练方法是目前应用最广泛且理论较成熟的一种方法,它使用梯度搜索技术使代价函数最小化,以完成从输入到输出的映射。梯度搜索技术是一种对某个准则函数的迭代寻优算法。设:T⑷是准则函数,α为一向量。是在点的梯度,为一向量,其方向是Ιξα;)增长最快的方向;负梯度方向,则是J(的减小最快的方向。因此,若求某函数的极大值,沿梯度方向走,可最快地达到最大点;反之,沿负梯度方向走,可最快地达到最小点,梯度搜索技术是求函数极小值的迭代算法。代价函数采用均方误差,就是误差的平方和的平均值的平方根,在本专利技术中将训练样本中的原料参数(原料种类、原料密度、原料粒度、浆液粘度、浆液比例、浆液温度和亲水性)输入神经网络的输入层,神经网络的输出层就会输出相应的配方参数(进风温度、出风温度、物料温度、总时间、风机频率、风阀开度),这个配方参数本文档来自技高网...

【技术保护点】
1.一种基于神经网络系统的制粒机配方生成方法,其特征在于,该方法包含以下步骤:步骤1 神经网络系统采集用于制粒机的神经网络的训练样本;步骤2 神经网络系统仿真训练用于制粒机的神经网络,确定神经网络的权值和阈值;步骤3 神经网络系统自动采用原料参数生成制粒机的生产配方。

【技术特征摘要】
1.一种基于神经网络系统的制粒机配方生成方法,其特征在于,该方法包含以下步骤步骤1神经网络系统采集用于制粒机的神经网络的训练样本;步骤2神经网络系统仿真训练用于制粒机的神经网络,确定神经网络的权值和阈值;步骤3神经网络系统自动采用原料参数生成制粒机的生产配方。2.如权利要求1所述的基于神经网络系统的制粒机配方生成方法,其特征在于,所述的步骤1包含以下步骤步骤1. 1现实的制粒机模拟运行; 步骤1. 2系统设定制粒机运行的原料参数;步骤1. 3系统根据制粒机的运行过程,给出与原料参数相对应的配方参数; 步骤1. 4神经网络系统存储制粒机相对应的原料参数与配方参数,获得用于训练神经网络的训练样本。3.如权利要求2所述的基于神经网络系统的制粒机配方生成方法,其特征在于,所述的步骤1. 3中所述的原料参数包含原料种类、原料密度、原料粒度、浆液粘度、浆液比例、浆液温度和亲水性。4.如权利要求2所述的基于神经网络系统的制粒机配方生成方法,其特征在于,所述的步骤1. 3中所述的配方参数包含进风温度、出风温度、物料温度、总时间、风机频率、风阀开度。5.如权利要求1所述的基于神经网络系统的制粒机配方生成方法,其特征在于,所述的步骤2包含以下步骤步骤2. 1神经网络系统导入训练样本中的各原料参数,作...

【专利技术属性】
技术研发人员:方正谢楠
申请(专利权)人:浙江迦南科技股份有限公司
类型:发明
国别省市:33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1