本发明专利技术公开了一种精确测量不同应力条件下波的传播速度的装置及方法,包括压力装置,压力装置包括压力腔,压力腔连接有加压气筒和压力表,压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。可以通过向压力腔内注满水,并根据不同压力值下的示波器信息得出超声波在不同压力下传播规律,采用连续波相位差原理将声速的微小改变放大为相位的显著变化,能精确测量不同应力条件下波的传播速度。
【技术实现步骤摘要】
本专利技术涉及一种测试波的传播的装置,特别是涉及一种。
技术介绍
一方面,海水声速作为海洋监测的重要参数,能为舰船、潜艇等水声设备的活动搜集和提供重要的海洋环境参数,不同深度处海水声速测量在水文地质、反潜作战、地质调查、水文水道测量等方面起着重要作用;另一方面,超声波检测技术作为声波研究的一项重要应用,相对于传统的检测方法,具有高精度、无损伤、非接触等优点,在土木、采矿、生命科学等领域有着重要地位和光明的发展前景。但是超声波在传播过程中随应力场的衰减规律并不清楚,从而限制了超声波的进一步应用,在现有测量技术与方法中,也没有基于应力条件测量的装置与方法。
技术实现思路
本专利技术的目的是提供一种。本专利技术的目的是通过以下技术方案实现的本专利技术的精确测量不同应力条件下波的传播速度的装置,包括压力装置,所述压力装置包括压力腔,所述压力腔连接有加压气筒和压力表,所述压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。本专利技术的上述的精确测量不同应力条件下波的传播速度的装置实现精确测量超声波在不同压力下传播规律的方法,包括步骤首先,向所述压力腔内注满水,启动信号发生器,信号发生器发出的正弦连续波信号分为两个声波信号,一个声波信号通过压力腔的两端的超声波探头在压力腔内的水中传播后从示波器的“Y”插孔输入;另一个声波信号直接从示波器的“X”插孔输入;然后,调节信号发生器电压和频率,使示波器上波形的效果达到最佳,并记录下常压下的示波器信息;之后,逐渐向所述压力腔内加压至设定值,再逐渐降压至常压,并记录下不同压力值的示波器信息;根据所得的示波器信息得出超声波在不同压力下传播规律。由上述本专利技术提供的技术方案可以看出,本专利技术实施例提供的一种,由于压力腔连接有加压气筒和压力表,压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。可以通过向所述压力腔内注满水,并根据不同压力值下的示波器信息得出超声波在不同压力下传播规律,采用连续波相位差原理将声速的微小改变放大为相位的显著变化,能精确测量不同应力条件下波的传播速度。 附图说明为了更清楚地说明本专利技术实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。图1为本专利技术的精确测量不同应力条件下波的传播速度的装置的线路连接示意图;图2为本专利技术中压力装置的俯视结构示意图;图3为本专利技术中压力装置的左侧视结构示意图;图4为本专利技术的实施例中加压气筒旋转加压过程的左侧视剖面示意图。图中1-压力腔,2_加压气筒,3_压力表;A-压力装置,B-信号发生器,C-示波器,D-超声波探头,E-三接口分头,F-数据传输线,G-耦合剂,H- “T”形手柄,I-端盖,J-环形橡皮密封圈,K-圆形钢管,L-球形阀;Dl-压力腔外径,Ll-压力腔长度,D2-压缩筒外径,δ 1_压力容器厚度,δ 2_压缩筒厚度。具体实施例方式下面结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术的保护范围。本专利技术的精确测量不同应力条件下波的传播速度的装置,其较佳的具体实施方式是,包括压力装置,所述压力装置包括压力腔,所述压力腔连接有加压气筒和压力表,所述压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。所述压力腔为筒状,所述加压气筒和压力表设于所述的压力腔的中部,且所述加压气筒和压力表与所述的压力腔形成连通的整体。所述加压气筒包括压缩筒,所述压缩筒的一端与所述压力腔连接,且该端设有阀门;所述压缩筒的另一端设有端盖,所述压缩筒内设有旋转活塞,所述活塞连接有T形手柄,所述T形手柄穿过所述端盖并与所述端盖螺纹啮合。所述旋转活塞与所述压缩筒的内壁之间设有密封圈。所述端盖与所述压缩筒螺纹连接。所述超声波探头通过耦合剂连接在所述压力腔的端部。本专利技术的上述的精确测量不同应力条件下波的传播速度的装置实现精确测量超声波在不同压力下传播规律的方法,其较佳的具体实施方式是,包括步骤首先,向所述压力腔内注满水,启动信号发生器,信号发生器发出的正弦连续波信号分为两个声波信号,一个声波信号通过压力腔的两端的超声波探头在压力腔内的水中传播后从示波器的“Y”插孔输入;另一个声波信号直接从示波器的“X”插孔输入;然后,调节信号发生器电压和频率,使示波器上波形的效果达到最佳,并记录下常压下的示波器信息;之后,逐渐向所述压力腔内加压至设定值,再逐渐降压至常压,并记录下不同压力值的示波器信息;根据所得的示波器信息得出超声波在不同压力下传播规律。具体实施例中,向所述压力腔内加压的设定值可以为4. OMPa,每隔0. 4MPa进行一次测量。本专利技术是一种基于不同应力条件精确测试声波在水中传播规律的实验装置和试验方法,根据连续波相位差原理,将不同应力下波速的微小改变量转化为声波的相位变化, 利用声波的高频实现微小量放大,从而达到精确测试波速的目的;水中应力改变采用旋转手动活塞压缩液体实现。从而为声波在介质中的传播规律的研究提供一种间接有效的途径。具体实施例如图1所示,整套装置的正面连接总示意图信号发生器发出正弦连续波信号经过一个三借口分头分为两个声波信号。一个声波信号经过数据传输线,通过紧贴在压力腔上超声波探头在压力水中传播后从示波器“Y”插孔输入;另一个声波信号直接从示波器 “X”插孔输入。如图1、图2、图3所示,分别从主视、左侧视、俯视角度清楚的展示了压力装置的具体细部构造特征压力表和加压气筒牢固焊接在压力腔中间截面上,且成正交方位。如图4所示,为加压气筒手动加压的一个左侧面剖面图的实施例,球形阀掰起至手柄与压缩腔轴线平行,阀门孔连同;按图顺时针方向旋转“T”形手柄,活塞缓慢向压缩腔内移动,压缩压力腔内的水,从而使水中应力增大,达到预定应力后,掰下手柄与压缩腔轴线垂直,阀门孔隔开。具体实施例中,信号发生装置可以采用能发出正弦波信号的TreiOlO DDS函数信号发生器;波形显示装置可以采用RIGOL数字型示波器;压力装置包括压力腔1、手动加压气筒2和普通压力表3等。1)普通压力表选用标度范围为0 IOMI5a压力表,采用焊接形式连接在压力腔侧壁中间部位;2)压力腔为钢质材料做成的两端封闭的圆柱筒体,圆筒长Ll = 375mm,外围直径 Dl = 150mm,壁厚 δ = 5mm ;3)手动加压汽筒焊接在与压力表同一截面且与其垂直的方向上,它由T形旋转手柄、活塞头、带孔端盖、球形阀、压缩筒组成。压缩筒由一圆形钢管做成,圆形钢管外径D2 = 30mm,既是注入水的通道,也是活塞运动实现加压、减压的部位;T形旋转手柄由一光滑圆形钢条和带螺丝圆柱形钢条焊接而成,带螺丝圆柱形钢条刚好穿过带孔端盖,能被其固定在光管上,本文档来自技高网...
【技术保护点】
1.一种精确测量不同应力条件下波的传播速度的装置,其特征在于,包括压力装置,所述压力装置包括压力腔,所述压力腔连接有加压气筒和压力表,所述压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。
【技术特征摘要】
1.一种精确测量不同应力条件下波的传播速度的装置,其特征在于,包括压力装置,所述压力装置包括压力腔,所述压力腔连接有加压气筒和压力表,所述压力腔的两端分别连接有超声波探头;两个超声波探头分别通过数据传输线与示波器连接,其中一个超声波探头的数据传输线上连接有信号发生器。2.根据权利要求1所述的精确测量不同应力条件下波的传播速度的装置,其特征在于,所述压力腔为筒状,所述加压气筒和压力表设于所述的压力腔的中部,且所述加压气筒和压力表与所述的压力腔形成连通的整体。3.根据权利要求2所述的精确测量不同应力条件下波的传播速度的装置,其特征在于,所述加压气筒包括压缩筒,所述压缩筒的一端与所述压力腔连接,且该端设有阀门;所述压缩筒的另一端设有端盖,所述压缩筒内设有旋转活塞,所述活塞连接有T形手柄,所述T形手柄穿过所述端盖并与所述端盖螺纹啮合。4.根据权利要求3所述的精确测量不同应力条件下波的传播速度的装置,其特征在于,所述旋转活塞与所述压缩筒的内壁之间设有密封圈。5.根据权利要求4所述的精确测量不同应力条件下波的传播速度的...
【专利技术属性】
技术研发人员:左建平,熊国军,
申请(专利权)人:中国矿业大学北京,
类型:发明
国别省市:11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。