数字图像中圆的中心与半径快速检测方法技术

技术编号:6027507 阅读:298 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种数字图像中圆的中心与半径快速检测方法,包括:采集图像并输入计算机;计算图像的边缘图;计算特征圆半径分布图与特征圆能量分布图;阈值约束下在特征圆能量分布图上进行局部极大值点检测;利用特征圆能量与特征圆半径之比验证并剔除不合理的局部极大值点;利用局部极大值点位置及对应的特征圆半径分别确定圆的中心与半径,输出结果。本发明专利技术提供的方法能够准确提取出图像中圆的中心与半径,而且在计算效率上优于已有方法。

【技术实现步骤摘要】

本专利技术涉及计算机视觉中的图像特征自动检测领域,特别是数字图像中圆的中心 与半径快速检测方法。
技术介绍
数字图像中圆的检测在物体识别、定位以及摄像机标定等领域有重要应用。长期 以来,数字图像中进行圆检测主要是Hough变换的方法与梯度汇聚的方法,两者的主要问 题是都需要进行大量的运算,导致效率较低,且梯度汇聚的方法仅能检测出圆的中心,不能 检测出圆的半径。针对已有圆检测方法存在的问题,本专利技术主要解决数字图像中圆的中心 与半径快速检测问题。
技术实现思路
本专利技术针对数字图像中圆的中心与半径快速检测问题,目的是提供一种能够准确 检测图像中圆的中心与半径的快速方法。为了实现本目的,本专利技术数字图像中圆的中心与 半径的快速检测方法,包括以下步骤步骤Sl 采集图像并输入计算机;步骤S2 利用Carmy边缘检测算子计算图像的边缘图;步骤S3 计算图像中各点的特征圆半径与特征圆能量,获得特征圆半径分布图与 特征圆能量分布图;步骤S4 在固定阈值约束下,在特征圆能量分布图上进行局部极大值检测;步骤S5 利用特征圆能量与特征圆半径之比验证并剔除不合理的局部极大值点;步骤S6 利用所述局部极大值点位置确定圆的中心,利用所述局部极大值点处的 特征圆半径确定圆的半径,输出结果。本专利技术提供的,主要利用图像中边缘点 到中心点的距离分布(即圆周上各点到圆心的距离等于半径),首先计算在以各点为中心 的圆形区域内的边缘点到中心点的距离,并根据各距离出现的频率确定各点处的特征圆半 径与特征圆能量,获得图像的特征圆半径分布图与特征圆能量分布图,然后固定阈值约束 下在特征圆能量分布图上进行局部极大值检测,并剔除不合理的局部极大值点;最后根据 局部极大值点确定圆的中心,根据局部极大值点对应的特征圆半径确定圆的半径。本专利技术 提供的方法不仅能够准确检测出图像中圆的中心与半径,而且计算效率上优于已有方法。附图说明图1为本专利技术流程图。图加为实施例中使用的原始图像;图2b为利用Carmy算子在图加上获得的边缘 图;图2c、2d分别为本专利技术提供的方法在图加上获得的特征圆半径分布图与特征圆能量分 布图;图加为本专利技术提供的方法最终检测结果。具体实施例方式如图1所示为本专利技术流程图,包括采 集图像并输入计算机、计算图像的边缘图、计算特征圆半径分布图与特征圆能量分布图、在 特征圆能量分布图中进行局部极大值点检测、验证并剔除不合理的局部极大值点、利用极 大值点及其特征圆半径分别确定圆的中心与半径,并输出结果。各步骤的具体实施细节如 下步骤Sl 采集图像并输入计算机。步骤S2 利用Carmy边缘检测算子计算图像的边缘图。步骤S3:根据指定的图像最大圆半径R,计算图像中各点的特征圆半径与特征圆 能量,获得图像的特征圆半径分布图与特征圆能量分布图。指定一个整数R(R可根据预检 测圆的最大半径设置),对于图像中任一点X(x,y),考虑以X为圆心R为半径的圆形区域内 的边缘点Pi (i = 1,2,...,N) (N为边缘点的个数),分别计算点X与各边缘点的距离Cli =IX-PiI I (i = 1,2,...,N)(四舍五入为整数),统计距离屯出现的次数,将出现频率最高 的距离定义为点X处的特征圆半径,记为K(x,y),其相应的出现次数定义为点X处的特征 圆能量,记为E(x,y);计算图像中各点处特征圆半径与特征圆能量,可获得特征圆半径分 布图与特征圆能量分布图。步骤S4 在固定阈值约束下,在特征圆能量分布图上检测局部极大值点。记图像 中任一点X(x,y),该点处的特征圆能量为E(x,y),在阈值T约束下,在特征能量分布图上检 测在3X3邻域内为极大值的点,即满足如下条件E (X,y) > T,E (X,y) > E (x+1,y+1), E(x, y) > E (x_l,y-1),E(χ, y) > E(x-1, y), E(x, y) > E(x+1, y), E(x, y) >E(x,y_l),E (x,y) > E (x,y+1),E (x,y) > E (x_l,y+1),E (x,y) > E (x+1,y-1);其中,阈值T的具体确定方法为T = Mean (E) +k · Std(E),Mean (E)与Md(E)分 别表示所述特征圆能量分布图的均值与标准差,比例系数k的取值范围为2 3。步骤S5 利用特征圆能量与特征圆半径之比验证并剔除不合理的局部极大值点。 对于步骤S4获得的局部极大值点处的特征圆半径与特征圆能量分别为K(x,y)与E(x,y), 将不满足条件E(x,y)/K(x, y) > · s的局部极大值点剔除,比例系数s的取值范围为 0. 5 0. 7。步骤S6 利用局部极大值点位置确定圆心位置,利用局部极大值点位置处的特征 圆半径确定圆的半径,输出结果。对于经过步骤S5后获得的局部极大值点P(x,y),记点 P(x,y)的特征圆半径为K(x,y),则可确定图像中一个中心为P(x,y),半径为K(x,y)的圆。实施例如图加所示一幅灰度图像,图像大小为587X184,图像中包含三个大小不同的 圆。下面介绍使用本专利技术提供的方法检测圆的中心和半径的具体实施步骤步骤Sl 采集图像并输入计算机。步骤S2 利用Carmy边缘检测算子计算图像的边缘图。利用Carmy算子进行边缘 检测时的高斯尺度设置为1. 0,进行连接时的高低阈值参数分别设置为0. 3与0. 1,如图2b 所示为使用Carmy算子对图加进行边缘检测后获得的边缘图。步骤S3 计算图像中各点的特征圆半径与特征圆能量,获得特征圆半径分布图与 特征圆能量分布图。设置区域半径R = 50,对于图像中任意一点X(x,y),考虑X为圆心R 为半径的圆形区域内的边缘点Pi (i = 1,2,...,N) (N为边缘点的个数),分别计算点X与 这些边缘点的距离Cli = I IX-PiI I (i = 1,2,...,N)(四舍五入为整数),统计距离屯出现 的次数,将出现频率最高的距离定义为点X处的特征圆半径,其相应的出现次数定义为点X 处的特征圆能量。计算图像中各点处的特征圆半径与特征圆能量,可获得图像的特征圆半 径分布图与特征圆能量分布图。如图2c、2d所示分别为获得的特征圆半径分布图与特征圆 能量分布图。步骤S4 在固定阈值约束下,在特征圆能量分布图上检测局部极大值点。设置比 例系数k = 3,经计算特征能量分布图的均值与标准差分别为3. 0885与5. 8296,于是取阈 值T = 3. 0885+3 X 5. 8296 = 20. 5733,在特征能量分布图上检测大于T且在3 X 3邻域内为 极大值的点,共计获得235个局部极大值点。步骤S5 利用特征圆能量与特征圆半径之比验证并剔除局部极大值点。设置比例 系数s = 0.5,对于步骤54获得的235个局部极大值APi (Xi,yi) (i = 1,2,. . .,2;35),将不 满足条件E(Xi,Yi)/K (xi; Yi) > 2 π . s的局部极大值点剔除,可获得共计4个局部极大值 点 P1 = (93,92)、P2 = (93,202)、P3 = (93,327本文档来自技高网...

【技术保护点】
一种数字图像中圆的中心与半径快速检测方法,其特征在于,包括步骤:步骤S1:采集图像并输入计算机;步骤S2:利用Canny边缘检测算子计算图像的边缘图;步骤S3:计算图像中各点的特征圆半径与特征圆能量,获得特征圆半径分布图与特征圆能量分布图;步骤S4:在固定阈值约束下,在特征圆能量分布图上进行局部极大值检测;步骤S5:利用特征圆能量与特征圆半径之比验证并剔除不合理的局部极大值点;步骤S6:利用所述局部极大值点的位置确定圆的中心,利用所述局部极大值点对应的特征圆半径确定圆的半径,输出结果。

【技术特征摘要】

【专利技术属性】
技术研发人员:王志衡刘红敏贾宗璞许焱平
申请(专利权)人:河南理工大学
类型:发明
国别省市:41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1