提供一种振荡频率控制电路,校正自身的频率,在自振荡时也稳定地保持振荡频率,而且能够以可改变来自外部的固定电压的控制电压来进行振荡。具有:电压控制振荡器(15);分频器(16);相位比较器(12);环路滤波器(14);检波电路(17);PWM电路(22);存储器(21);控制电压可变电路(26);选择开关(13),对相位比较器(12)与环路滤波器(14)的连接进行接通/断开,并且选择输出来自控制电压可变电路(26)的控制电压;和CPU(20),按照该控制电压选择的指示来优先地选择输出该控制电压,在没有该指示的情况下如果由检波电路(17)检测出的外部基准信号的电平在适合范围内,则使选择开关(13)成为接通,如果电平在适合范围外,则使选择开关(13)成为断开并将存储在存储器(21)中的脉冲生成的信息输出到PWM电路(22)。
【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及振荡器的振荡频率控制电路,特别是涉及如下的振荡频率控制电路 与输出信号同步,校正自身的频率,在没有稳定性高的基准信号时也可以在一定期间内稳 定地进行保持,而且能够以可改变来自外部的固定电压的控制电压来进行振荡。
技术介绍
在下一代移动体通信以及地面数字广播等的基站中,针对频率基准信号的要求精 度逐渐变高。在广播、通信领域的系统中,作为频率基准信号,利用了铯频率基准振荡器、铷频 率基准振荡器、利用GPS信号的频率同步型的基准振荡器等。但是,这些振荡器的价格一般较高,所以来自这些振荡器的基准信号被分配而用 作装置的基准信号源。分配的基准信号被用作通信系统的基准时钟。具体而言,被用作PLL (Phase Locked Loop 锁相环)电路的相位比较的参考信 号、DSP(Digital Signal Processor 数字信号处理器)、FPGA(Field Programmable Gate Array 现场可编程门阵列)等的基准时钟信号、DA(Digital/Analog 数字/模拟)转换器、 AD (Analog/Digital 模拟/数字)转换器的采样时钟。接下来,参照图6对以往的PLL电路进行说明。图6是示出一般的PLL电路的结 构框图。PLL电路如图6所示,具备相位比较器(Phase Comparator) 32,将外部基准信 号(Fref)与1/N分频的信号进行比较,输出相位差信号;供给泵(Charge Pump) 33,以 脉冲宽度的电压来输出相位差;环路滤波器(Loop Filter) 34,对来自供给泵33的输出 电压进行平滑化;带电压控制功能的晶体振荡器35(VCX0 =Voltage ControlIedCrystal 0sCillator)35,利用来自环路滤波器34的控制电压来变更频率而振荡输出所希望的频率 (内部基准信号0utput Frequency (输出频率));以及分频器(Divider) 36,将VCX035的 输出(内部基准信号)分频为1/N。另外,内部基准信号为NXFref的信号。PLL电路通过对内部的VCXO 35施加反馈控制以使从外部输入的基准信号与内部 的VCXO 35的相位差成为恒定,从而得到与基准信号同步且与基准信号的频率稳定性相同 的振荡器输出。具体而言,相位比较器32对稳定性高的外部基准信号与来自利用输入电压进行 频率控制的VCXO 35的输出信号的相位进行比较,进行向VCXO 35反馈对相位比较结果进 行平滑化而得到的直流电压的PLL控制,从而进行高精度的信号生成。PLL电路广泛使用于通信、广播装置等中。另外,作为与以往的振荡器中的振荡频率控制电路相关的现有技术,有日本特开42000-083003号公报(专利文献1)和日本特开2003-179489号公报(专利文献2)。在专利文献1中,记载有如下的自由振荡(Free run)频率调整方式频率计数器 进行与在对应于脉冲宽度的时间内所输入的VCO(Voltage Controlled Oscillator 电压 控制振荡器)的输出信号同步的计数动作,在锁存电路中保持与VCO的振荡频率对应的计 数值,CPU在系数值从规定范围内脱离的情况下改变VCO的施加电压,以使自由振荡频率成 为规定范围的方式进行调整。另外,在专利文献2中,记载有如下的具有电压控制振荡器的自振荡频率的自动 调整功能的锁相环电路微型计算机在相位比较器的输出处于规定电平的期间对VCO的输 出脉冲信号的脉冲进行计数,根据该计数值更新控制用的数据,将该数据通过DAC(Digital AnalogConverter 数字模拟转换器)转换为模拟信号并与来自LPF(Low PassFilter 低通 滤波器)的信号结合而作为VCO的频率控制信号。专利文献1 日本特开2000-083003号公报专利文献2 日本特开2003-179489号公报
技术实现思路
但是,在上述以往的PLL电路中,在无基准信号的输入时,无法进行相位比较,所 以向其它外部基准信号进行切换、或者以电压控制振荡器的自由振荡(自振荡)进行动作, 但在向预备系统的其它外部基准信号切换时,再次进行PLL控制,因此基准信号的偏差取 决于外部基准信号,所以不会成为问题,但在自振荡时根据切换时的相位比较结果,频率被 过渡地控制,存在贴近上限或下限的频率而使频率偏移变大这样的问题点。即使在自振荡时,作为短期性的问题解决方法,有时将温度补偿型的稳定性高的 晶体振荡器(VC-TCXO)用作电压控制振荡器。但是,在该情况下例如以士 0. 5ppm的频率稳定性进行动作,但由于随着时间而发 生变化,所以无法满足长期性能。例如,如果假设作为老化特性而存在每年士 Ippm左右的变动,则如果经过10年, 最大发生10. 5ppm的频率偏差。如果将正在通信的载波输出频率设为800MHz,则与基准频 率的频率偏差同样地,发生8. 4kHz的频率偏移。作为系统无法容许这样的频率偏差。另外,在使用带电压控制功能的恒温槽晶体振荡器(VC-0CX0)的稳定性高的系统 的情况下,也因老化特性而在长的期间中发生频率偏差,所以每隔一定期间发生校正作业, 存在校正作业麻烦这样的问题点。另外,在专利文献1、2中,对VCO的输出进行计数、或者对相位比较器的输出进行 计数来进行自振荡频率的调整,但并非直接检测外部基准信号的异常而进行频率调整,进 而无法充分应对时效变化。另外,图7示出VCXO的控制电压特性。图7是示出带电压控制功能的晶体振荡器 的控制电压特性例子。在图7中,横轴为控制电压,纵轴为频率偏差。在图7的例子的VCXO中,如果控制电压为0 4V,则可以动作,但如果为4V以上, 则无法动作。另外,图8示出VCXO的自由振荡(自振荡)的情况下的特性。图8是示出VCXO 的自由振荡特性的图。即使在VCXO的情况下,频率偏差也随着时间的经过而上升,所以适合的控制电压 会变化。温度补偿型的晶体振荡器也相同。接下来,图9示出外部基准信号是铷等的稳定性高的信号时的频率特性。图9是 示出外部基准信号是稳定性高的信号的情况下的频率特性的图。如图9所示,在外部基准信号是铷等的稳定性高的信号时,即使经过了时间,也收 敛于在系统中容许的频率偏差的范围内。并且,图10示出切断了外部基准信号时的频率特性。图10是示出切断了外部基 准信号时的频率特性的图。切断了外部基准信号时的频率特性如图10所示,在连接断开的时刻,频率偏差大 幅上升,之后频率偏差伴随时间经过而逐渐上升,如果不进行定期校正,则会超过系统可以 容许的频率范围。另外,存在如下问题对于基站,还存在未必能够得到外部基准信号的基站,在该 情况下,并非上述PLL电路,而是需要可以使振荡器以固定电压进行振荡的其它结构的振 荡器,必须根据基站而准备对应的振荡控制电路。本专利技术是鉴于上述实情而完成的,目的在于提供一种振荡频率控制电路,校正自 身的频率,即使在没有输入稳定性高的基准信号而进行了自振荡时也可以稳定地保持振荡 频率,而且能够以可改变来自外部的固定电压的控制电压来进行振荡。用于解决上述以往例的问题的本专利技术提供一种振荡频率控制电路,具有电压控 制振荡器;分频器,对来自电压控制振荡器的输本文档来自技高网...
【技术保护点】
一种振荡频率控制电路,其特征在于,具有:电压控制振荡器;分频器,对来自上述电压控制振荡器的输出进行分频;相位比较器,将外部基准信号与来自上述分频器的输出的相位进行比较,输出相位差信号;环路滤波器,对来自上述相位比较器的输出进行平滑化并输出;检波电路,对外部基准信号进行检波;脉冲生成电路,如果输入了脉冲生成的信息,则生成脉冲并输出到上述环路滤波器;存储器,存储规定的电压信息和与其对应的脉冲生成的信息;控制电压可变电路,进行变更固定电压的调整;选择开关,对上述相位比较器与上述环路滤波器的连接进行接通/断开;以及控制部,如果由上述检波电路检测出的外部基准信号的电平在适合范围内,则使上述选择开关成为接通,如果上述电平在适合范围外,则使上述选择开关成为断开,在选择来自上述控制电压可变电路的控制电压的情况下,将选择该控制电压的指示输出到上述脉冲发生电路,在没有选择上述控制电压的情况下,将存储在上述存储器中的脉冲生成的信息输出到上述脉冲发生电路。
【技术特征摘要】
【国外来华专利技术】...
【专利技术属性】
技术研发人员:大西直树,
申请(专利权)人:日本电波工业株式会社,
类型:发明
国别省市:JP[日本]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。