本发明专利技术涉及一种通过在气相中对C↓[4]-二羧酸和/或其衍生物进行催化加氢的两步法制备任选烷基取代的1,4-丁二醇的方法,其具有如下步骤:a)在200到300℃和2到60巴下将C↓[4]-二羧酸或其衍生物的气流导入第一反应器,并在气相中催化氢化以得到主要包含任选烷基取代的γ-丁内酯的产物;b)去除在步骤a)中得到的产物中的琥珀酸酐,优选至残余量按重量计算<大约0.3到0.2%;c)在温度150℃到240℃和压力15到100巴下将步骤b)中获得的产物流导入第二反应器,并在气相中催化氢化以得到任选烷基取代的1,4-丁二醇;d)从中间体、副产物和任何未转化的反应物中移走所希望的产物;e)任选将未转化的中间体循环导入一个或两个氢化步骤中,每个所述氢化步骤所用的催化剂包括按重量计算≤95%、优选按重量计算从5到95%、特别是按重量计算从10到80%的CuO,和按重量计算≥5%、优选按重量计算从5到95%、特别是按重量计算从20到90%的氧化载体,并且所述第二反应器具有比第一反应器高的压力。(*该技术在2023年保护过期,可自由使用*)
【技术实现步骤摘要】
本专利技术涉及一种通过底物的气相催化加氢制备任选烷基取代的丁二醇(即丁二醇可以被烷基取代,也可以不被烷基取代)的方法,所述底物选自马来酸和琥珀酸的衍生物和这些酸本身。为了达到本专利技术的目的,象这些酸一样,衍生物是可以带有一个或多个烷基取代基的酸酐。在第一氢化步骤之后去除琥珀酸酐使得催化剂在第二氢化步骤中的活性、选择性和寿命得到提高。众所周知,马来酸酐MA的加氢经过琥珀酸酐中间体(SA)最初生成γ-丁内酯(GBL)。进一步加氢将生成四氢呋喃(THF)、正丁醇(BuOH)和/或正丁烷。在GBL和丁二醇(BDO)所处的平衡中,采取适当的措施可以使其充分移向丁二醇一侧。但是,丁二醇在过度氢化时会像GBL一样容易起反应而成丁醇和丁烷;丁二醇成环得到THF。这些产物不能转化回BDO和GBL。若希望的产物是BDO,特别应避免THF的形成。纯马来酸酐(MA)到丁内酯(GBL)和纯GBL到BDO的转化的气相加氢是两个多年来已知的反应。为了实施这两个催化反应,文献中描述了多种催化系统。取决于催化剂的组成和反应参数的选择,这些催化剂会给出不同的产物分布。同样,从MA开始直接制备丁二醇的方法也是已知的。当准备制备带有烷基取代基的GBL和BDO时,利用上面提到的反应物的相应的烷基取代的物质是可行的。用于MA氢化生成上述产物之一的催化剂,特别是在以前的方法中,经常含有铬。这可以通过专利文献反映出来,其中大量的专利和专利申请公开的是在氢化反应中采用铬催化剂,尽管在大部分情况下氢化限于以MA作为反应物。下文的文献描述的是铬催化剂在氢化MA中的用途。EP-A-0322140公开了一种通过气相氢化MA和SA制备四氢呋喃(THF)和共同生产THF与GBL的连续方法。权利要求中的催化剂包含铜、锌和铝及另一种IIA、IIIA、VA、VIII、IIIB到VIIB族元素,镧系和锕系元素,以及Ag和Au。在40巴下,这些催化系统从纯MA开始得到THF的产率是90-95%,并且可在大约20巴的压力下获得GBL和THF的混合物。然而,在US4965378和US5072009中使用了类似的催化剂,其还可包含Si、Ge、Sn和Pb。这些催化剂的使用导致了大量的不能转化成丁内酯和丁二醇的THF(从95%到31.4%)。EP-A-0404408公开了一种MA加氢催化剂,其催化活性物质基本上相应于US5072009中的物质。它用作涂覆催化剂固定在载体上。在实施例中,仅使用了铬催化剂。在压力2巴时能实现高GBL产率,但当所用的压力越来越大时,THF的产率增加,而GBL的产率下降。US5149836公开了制备GBL和THF的多步骤气相方法,通过在第一步中通过向包含铜、锌和铝的催化剂中通入纯MA和氢的混合物进行,其具有可变的产物选择性。接着将这种粗反应流出物通过铬催化剂以制备THF。WO99/38856公开的催化剂只包含铜和铬,其允许从纯MA开始直接得到GBL的选择性为从92到96摩尔%。EP-A-638565公开了包含铜、铬和硅的催化剂,其在一个实施例中组成为大约78%CuO、20%的Cr2O3和2%的SiO2。采用纯MA和氮-氢混合物可以获得的GBL产率为98%。下文的文献公开了采用无铬催化剂氢化MA。GB-A-1168220公开了气相制备GBL的方法,其通过二元铜-锌催化剂氢化MA或SA得到GBL。在所有的实施例中,操作在大气压强下进行并且从纯MA开始可以获得94摩尔%的GBL产率。DE-A-2404493中也公开了一种制备GBL的方法,其用金属催化剂催化加氢MA、SA、马来酸、琥珀酸和水的混合物,而且也采用了亚铬酸铜催化剂、铜-锌和铜-锌-铝沉淀催化剂。WO91/16132中公开的MA加氢形成GBL采用的催化剂包括CuO、ZnO和Al2O3,其在150℃到350℃下被还原并在400℃下被活化。该活化作用的目的是使催化系统的运行时间延长。US6297389中公开了一种包含CuO和ZnO的催化剂。在活化之后,其将纯MSA转化到GBL的产率为从92%到96%,并且由纯MA开始直接得到。WO95/22539公开了由MA和/或SA经催化剂催化加氢制备GBL的方法,该催化剂由铜、锌和锆组成。由纯MA开始获得GBL的产率为99%。WO99/35136公开了一种由MA加氢制备GBL和THF,在第一步采用铜催化剂,并将该反应流出物通入酸性硅-铝催化剂中的二步方法。WO97/24346公开了一种氧化铜-氧化铝催化剂,其氢化MA得到GBL的产率为92摩尔%。由GBL转化到BDO的反应已是众所周知的,下文提到的文献公开了采用铬催化剂的这种反应。DE1277233公开了一种用氢氢化内酯制备不同的醇的混合物的方法。所用催化剂为在惰性氧化铝载体上的掺杂钡的亚铬酸铜。GB-A-1230276公开了在180℃到230℃的温度下由GBL经氧化铜-氧化铬催化剂制备BDO的方法。根据DE-A-2231986,向亚铬酸铜催化剂中掺杂钾、钠、铷、铝、钛、铁、钴和镍提高了催化剂的运行时间。根据DE-A-2501499,BDO采用二噁烷、GBL、水和羧酸的混合物制备。所述反应在高压(170巴)下液相进行,优选使用溶剂二噁烷,同时类似地使用铜-氧化铬作催化剂。根据J0-A-1121228,亚铬酸铜催化剂掺杂Pd以获得较高的转化。Dasunin和Maeva在Z.Org.chim.1965年第1卷第6期第996-1000页、JA5366/69、JA7240770、J4 9024-906、J49087-610中对其他亚铬酸铜催化剂作了描述,并且实施例涉及纯GBL到BDO的液相转化。US4652685描述了在亚铬酸铜催化剂中纯GBL气相氢化形成丁二醇。压力为41巴,转化率为60-68%,可获得的BDO的选择性为92-97%。US5406004和US5395990公开了纯GBL经铜催化剂加氢制备醇和二醇混合物的方法。在温度从150℃到350℃并且压力从10.3巴到138巴下填充铜催化剂的氢化区被加氢进料和氢充满,并且组成为醇和二醇产物被分离出来。实施例中描述了一系列包含铜、锌和铬的催化剂。最后,下文引用的文献公开了采用无铬的铜催化剂氢化GBL形成BDO。WO82/03854中描述的是组成为CuO和ZnO的催化剂。在压力28.5巴和温度217℃的气相中,其得到的BDO的选择性为98.4%。但是,纯GBL的转化率低,不能令人满意。掺杂钯和钾的沉积铜催化剂在US4797382、US4885411和EP-A-0318129中有描述,它们适用于GBL到丁二醇的转化。GBL和水作为原料料流并结合氧化铜-氧化锌催化剂的用途在US5030773中作了描述。其公开了当1%到6%的水混合进纯的GBL流时提高了这些催化剂的活性,并且这些混合物在气相中加氢。当该反应中采用纯GBL时,多余的水必须被混合并此后再被去除。如果所用的GBL来自MA的氢化,则在进料中会存在17%的水。因此,在加氢形成BDO之前至少要有11%的水必须被除去。JP0634567-A描述一种包括铜、铁和铝的催化剂,其适宜于在高压(250巴)下氢化纯的GBL形成BDO。WO99/35113中提到了一种开始由马来酸酯制备BDO的方法。氢化作用由三个连续步骤完成本文档来自技高网...
【技术保护点】
一种通过在气相中对C4-二羧酸和/或其衍生物进行催化加氢的两步法制备任选烷基取代的1,4-丁二醇的方法,其具有如下步骤:a)在200到300℃和2到60巴下将C↓[4]-二羧酸或其衍生物的气流导入第一反应器,并在气相中催化氢化以得到主要包含任选烷基取代的γ-丁内酯的产物;b)去除在步骤a)中得到的产物中的琥珀酸酐,优选至残余量按重量计算<大约0.3到0.2%;c)在温度150℃到240℃和压力15到100巴下将步骤b)中获得的产物流导入第二反应器,并在气相中催化氢化以得到任选烷基取代的1,4-丁二醇;d)从中间体、副产物和任何未转化的反应物中移走所希望的产物;e)任选将未转化的中间体循环导入一个或两个氢化步骤中,每个所述氢化步骤所用的催化剂包括按重量计算≤95%、优选按重量计算从5到95%、特别是按重量计算从10到80%的CuO,和按重量计算≥5%、优选按重量计算从5到95%、特别是按重量计算从20到90%的氧化载体,并且所述第二反应器具有比第一反应器高的压力。
【技术特征摘要】
...
【专利技术属性】
技术研发人员:M黑塞,S施利特尔,H博彻特,M舒伯特,M勒施,N博特克,RH菲舍尔,A韦克,G温德克尔,G海德里希,
申请(专利权)人:巴斯福股份公司,
类型:发明
国别省市:DE[德国]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。