System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind() 基于群体平衡模型的多粒径支撑剂输送数值模拟方法技术_技高网

基于群体平衡模型的多粒径支撑剂输送数值模拟方法技术

技术编号:44143700 阅读:0 留言:0更新日期:2025-01-29 10:19
本发明专利技术涉及一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法,包括:结合群体平衡模型和两流体模型建立可描述支撑剂颗粒粒径‑速度分布的固液多相流动数学模型;采用矩积分法对构建的固液多相流动数学模型进行封闭,建立离散数值模型并植入开源代码库OpenFOAM中;取一定量的支撑剂试样进行粒径筛析,统计各粒径段支撑剂在总筛析试样中的占比,作为模拟输入参数;基于结构化网格剖分方法建立工程尺度裂缝网格模型,对网格模型和数值模型定义边界和赋初值后,进行支撑剂输送数值模拟。本发明专利技术通过引入群体平衡方程描述具有不同粒径和运动速度的支撑剂颗粒的分布特征,捕捉稠密固液多相流动中支撑剂颗粒的多分散特性,提高了计算精度和计算效率。

【技术实现步骤摘要】

本专利技术涉及油气田开发工程领域,特别是涉及一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法。


技术介绍

1、水力压裂过程中,大量支撑剂颗粒与压裂液混合后被注入地层裂缝系统。高压液流作用下,支撑剂经历悬浮运移和沉降堆积等动力学过程,最终在裂缝内形成多样化的空间分布模式,以此维持裂缝张开状态,优化油气流动路径和效率。因此,支撑剂输送环节直接关系到压裂施工效果和油气田产量。入缝支撑剂具有鲜明的粒径分布特征(如以40至70目或70至140目分布等),这些不同粒径的颗粒与压裂液紧密混合,共同构成了复杂的稠密固液多相流体系。该体系在流体力学中又属于典型的多分散体系,颗粒的多样粒径分布进一步增加了系统复杂性和动态行为。

2、通过室内实验可以直观地探究狭缝空间内多粒径支撑剂的输送行为,但实验装置往往受限于其在长度与高度方向上的物理尺寸,实验观测范围和记录过程存在局限,实验结果也难以外推。因此,室内实验研究不适用于深入分析工程尺度裂缝内支撑剂的长距离迁移与沉降规律。以计算流体力学-离散元耦合法和多相质点网格法等前沿数值技术为代表的方法,在捕捉支撑剂粒径分布的精细特征方面展现出了卓越能力,能够追踪颗粒或颗粒团簇在复杂流动环境中的运动轨迹,但由于其算法设计的内在特性,使用它们处理大规模系统或极端模拟尺度时存在限制。基于连续介质假设的欧拉方法通过固相颗粒浓度的时空演化特征来描述缝内支撑剂的输运过程,尤为适用于高效分析工程尺度裂缝中支撑剂的流动与分布规律,为压裂泵注设计和优化提供了强有力的理论支撑与分析工具。但目前这类方法不能较好地捕捉支撑剂的粒径分布特征,影响模拟结果可靠性。

3、群体平衡模型用于描述具有不同粒子属性(如粒径、速度等)的宏观粒子流动、聚并、破碎甚至相变等过程,被广泛用于气液(如气泡流)或气固(如流化床)多相流领域模拟,但它尚未被全面引入并应用于专门聚焦于颗粒团聚现象的稠密固液多相流系统以及多分散性体系中。


技术实现思路

1、为了克服现有技术中的问题,本专利技术提供了一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法。为实现上述目的,本专利技术提供了如下方案:

2、一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法,包括以下步骤:

3、s1、结合群体平衡模型和两流体模型建立可以描述支撑剂颗粒粒径-速度分布的固液多相流动数学模型;

4、s2、采用矩积分法对步骤s1中构建的固液多相流动数学模型进行封闭,建立离散数值模型并植入开源代码库openfoam中;

5、s3、取一定量的支撑剂试样进行粒径筛析,统计各粒径段支撑剂在总筛析试样中的占比,作为模拟输入参数;

6、s4、基于结构化网格剖分方法建立工程尺度裂缝网格模型,对网格模型和数值模型定义边界和赋初值后,进行支撑剂输送数值模拟。

7、进一步的技术方案是,所述步骤s1中群体平衡方程(pbe方程)不考虑颗粒聚并、破碎和相变过程,其表达式如下:

8、

9、式中:nd为颗粒数量分布函数;ξ为颗粒属性(如粒径d、速度v等)的集合;t为时间;ud为颗粒相平均速度;gd为漂移速率。

10、进一步的技术方案是,所述步骤s1中群体平衡方程(pbe方程)仅考虑支撑剂粒径和速度两个属性变量,并且假设相同粒径的颗粒速度一致,则颗粒数量分布函数nd表示为颗粒粒径-速度联合分布函数fd,其表达式如下:

11、

12、式中:x为某颗粒位置矢量;v为某颗粒速度;δ为狄拉克函数;存在n个积分节点,p节点处颗粒所占总颗粒的比重为wp,d为某颗粒粒径,dp为p节点处颗粒粒径。

13、进一步的技术方案是,所述步骤s1中tfm中的固相摩擦黏度封闭模型考虑了湿颗粒堆积黏聚力,其表达式如下:

14、

15、式中:μd,f为固相摩擦黏度;pd,f为固相压力;pd,c为临界固相压力;为颗粒内摩擦角,取28.5°;sd为固相剪切速率;θ为颗粒温度;n为屈服面形状因子;c为湿颗粒堆积黏聚力,取2kpa。

16、进一步的技术方案是,所述步骤s2中采用矩积分方法得到联合分布函数fd的k和k+1阶矩平衡方程,其通式表达式如下:

17、

18、式中,k表示第k阶;u为颗粒速度。

19、进一步的技术方案是,所述步骤s2中固液相间曳力由各积分节点曳力求和得到,其表达式如下:

20、

21、式中:下标l,p和d,p分别指代p节点处的液相和颗粒相;fd,d为总曳力;fd,d,p为p节点处曳力;βl-d,p为p节点处液相与颗粒的动量交换系数;u为相平均运动速度;αd为总固相分数;ρ为密度;cd,p为p节点处的曳力系数,rep为p节点处的颗粒雷诺数,h为颗粒到裂缝壁面的距离。

22、进一步的技术方案是,所述步骤s3中各粒径段支撑剂和总筛析试样的质量均在40℃烘干15分钟后测试。

23、另一方面,本专利技术提供了一种基于群体平衡模型的多粒径支撑剂输送数值模拟系统,包括以下模块:

24、数学模型建立模块,用于结合群体平衡模型和两流体模型建立可描述支撑剂颗粒粒径-速度分布的固液多相流动数学模型;

25、离散数值模型建立模块,用于采用矩积分法对步骤s1中构建的固液多相流动数学模型进行封闭,建立离散数值模型并植入开源代码库openfoam中;

26、模拟输入参数获取模块,用于取一定量的支撑剂试样进行粒径筛析,统计各粒径段支撑剂在总筛析试样中的占比,作为模拟输入参数;

27、数值模拟模拟,基于结构化网格剖分方法建立工程尺度裂缝网格模型,对网格模型和数值模型定义边界和赋初值后,进行支撑剂输送数值模拟。

28、另一方面,本专利技术提供了一种计算机设备,包括存储器、处理器及存储在存储器上并在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求任一项所述的多粒径支撑剂输送数值模拟方法的步骤。

29、另一方面,本专利技术提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述权利要求任一项所述的多粒径支撑剂输送数值模拟方法的步骤。

30、本专利技术具有以下优点:本专利技术提供了一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法,通过引入群体平衡方程描述具有不同粒径和运动速度的支撑剂颗粒的分布特征,捕捉稠密固液多相流动中支撑剂颗粒的多分散特性,同时在数学模型中考虑了湿颗粒堆积黏聚力的影响,相比现有技术中的模拟方法进一步提高了计算精度和计算效率。

本文档来自技高网...

【技术保护点】

1.一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤S1中群体平衡模型不考虑颗粒聚并、破碎和相变过程。

3.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤S1中群体平衡模型仅考虑支撑剂粒径和速度两个属性变量,并且假设相同粒径的颗粒速度一致,则颗粒数量分布函数nd表示为颗粒粒径-速度联合分布函数fd。

4.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,两流体模型中的固相摩擦黏度封闭模型考虑湿颗粒堆积黏聚力的影响。

5.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤S2中采用矩积分法得到联合分布函数fd的k和k+1阶矩平衡方程,其通式表达式如下:

6.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤S2中还包括由各积分节点曳力求和得到固液相间曳力。

7.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤S3中各粒径段支撑剂和总筛析试样的质量均在40℃烘干15分钟后测试。>

8.一种基于群体平衡模型的多粒径支撑剂输送数值模拟系统,包括以下模块:

9.一种计算机设备,包括存储器、处理器及存储在存储器上并在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1-8任一项所述的多粒径支撑剂输送数值模拟方法的步骤。

10.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现上述权利要求1-8任一项所述的多粒径支撑剂输送数值模拟方法的步骤。

...

【技术特征摘要】

1.一种基于群体平衡模型的多粒径支撑剂输送数值模拟方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤s1中群体平衡模型不考虑颗粒聚并、破碎和相变过程。

3.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤s1中群体平衡模型仅考虑支撑剂粒径和速度两个属性变量,并且假设相同粒径的颗粒速度一致,则颗粒数量分布函数nd表示为颗粒粒径-速度联合分布函数fd。

4.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,两流体模型中的固相摩擦黏度封闭模型考虑湿颗粒堆积黏聚力的影响。

5.根据权利要求1所述的多粒径支撑剂输送数值模拟方法,所述步骤s2中采用矩积分法得到联合分布函数fd的k和k+1阶矩平衡方程,其通式表达式如下:

【专利技术属性】
技术研发人员:张烨周航宇张志平曾春林左恒愽余代杰
申请(专利权)人:重庆地质矿产研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1