System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind()
【技术实现步骤摘要】
本专利技术涉及建筑节能,特别涉及实现需求侧响应的建筑热环境与建筑节能控制方法。
技术介绍
1、随着人们对生活品质的追求和环保意识的提高,对建筑热环境和节能控制的要求也越来越高。传统的建筑热环境调节和节能控制方法往往存在响应速度慢、控制精度低、能耗高等问题,无法满足现代建筑的需求。现关于建筑热环境与建筑节能相关的控制方法,公开号为cn116659034a的中国专利公开了一种空调建筑中建筑热环境与建筑节能控制方法及系统,通过对空调建筑划分区域,收集符合条件的区域中近地区的温度低于设定温度的冷空气,并依据空调建筑内人流量判定输送到其他区域的流量,从而将冷空气输送到其他区域,充分地利用了空调的制冷的冷量,减少了建筑内的空调能耗,达到了节能的效果。
2、然而上述专利虽然达到了节能的效果,但忽略了热环境的影响,导致控制精度和舒适度受限,不同区域或不同用户可能对热环境有不同的需求,现有技术并没有考虑到个性化需求,可能导致部分用户感到不满意的情况。
技术实现思路
1、本专利技术的目的在于提供实现需求侧响应的建筑热环境与建筑节能控制方法,通过综合考虑建筑能源使用、室内环境和人员活动的多方面因素,制定有效的节能控制策略,并通过智能控制系统实现实时监测和优化,提高建筑的能源利用效率、降低能耗成本,并为用户创造更加舒适和健康的室内环境,以解决上述
技术介绍
中提出的问题。
2、为实现上述目的,本专利技术提供如下技术方案:
3、实现需求侧响应的建筑热环境与建筑节能控制方法,包
4、步骤一:能源评估:在建筑项目进行节能改造前进行能源评估,收集建筑的评估数据,包括建筑类型、面积、朝向、周边环境数据,基于收集到的评估数据分析建筑的能源使用情况,并确定能源消耗的各个区域;
5、步骤二:制定控制策略:基于分析结果对能源消耗的各个区域制定对应的节能控制策略,并基于评估数据构建建筑项目虚拟模型,基于节能控制策略进行模拟推演,基于推演结果对节能控制策略的节能措施进行优化;
6、步骤三:终端控制监测:集成智能控制系统,包括分区控制、到位感应、时间序列控制和光感控制,收集实际运行数据,分析能源使用情况,基于优化后的节能措施进行实时监测和评估。
7、进一步的,所述步骤一中能源评估,具体包括:
8、数据收集:基于建筑项目获取建筑的类型和面积,并确定建筑的朝向和各功能区的布局,同时,收集建筑的周边环境信息,包括邻近建筑的高度、距离以及植被情况;
9、能源情况分析:获取建筑的历史能源数据,分析不同时间段的能源消耗数据,识别高峰时段和低谷时段,并获取建筑内各用能系统的运行状态;
10、能源消耗区域确定:根据建筑的功能布局和用能特点将建筑划分不少于一个的区域,并为每个区域进行标签标记,基于每个区域的标签类型对获取到的源消耗数据进行处理和分析;
11、能源消耗区域评估:基于各区域的处理分析结果比较所述各区域的能耗水平,确定能源消耗较大的关键区域,同时,基于获取到的周边环境信息评估建筑的遮挡情况和热岛效应的影响。
12、进一步的,所述步骤二中制定控制策略,具体为:
13、制定节能控制方案:基于各区域的标签类型和能耗水平进行区域整合,基于整合结果制定对应的节能控制策略,并将节能控制策略与每一区域进行一一对应;
14、方案模拟推演:基于获取到的建筑评估数据构建建筑虚拟模型,将制定的节能控制策略应用在建筑虚拟模型中,模拟建筑在不同条件下的运行状态和能耗情况,预测策略实施后的节能效果,并发现潜在的问题;
15、自适应调节与优化:根据模拟推演的结果对节能控制策略进行优化,并将优化后的策略应用于实际建筑中,实时获取反馈数据。
16、进一步的,所述步骤二中制定控制策略,还包括:
17、在建筑各区域内布设传感器网络,包括温度传感器、湿度传感器、光照传感器、人体红外传感器,基于所述传感器网络实时监测室内环境和人员活动数据;
18、基于获取到的室内环境数据判断当前室内光照强度和室内温湿度水平,基于时间信息和室外天气调节照明终端的亮度和色温,结合人员活动数据和室外温度数据推测室内温湿度变化趋势,基于推测结果调节空调送风系统;
19、建立与建筑内部各设备的无线信号传输通道,基于接收到的节能控制方案对应的控制指令控制各个设备的控制模块,调节室内环境,传感器网络持续监测室内环境的变化,并将新的数据进行数据反馈。
20、进一步的,所述步骤二中制定控制策略,还包括:
21、实时采集温度传感器、湿度传感器和光照传感器的数据采集时间间隔;
22、根据所述温度传感器、湿度传感器和光照传感器的数据采集时间间隔的变化,获取第一传感器时间间隔系数;其中,所述第一传感器时间间隔系数通过如下公式获取:其中,f01表示第一传感器时间间隔系数;f01、f02和f03分别表示温度传感器、湿度传感器和光照传感器对应的时间间隔系数;fn表示f01、f02和f03中的非最大值和非最小值的所对应的系数值;f0表示预设的系数基准值;其中,温度传感器、湿度传感器和光照传感器对应的时间间隔系数通过如下公式获取:其中,n、m和k分别表示温度传感器、湿度传感器和光照传感器运行所包含的数据采集时间间隔的个数;g01i、g02i和g03i分别表示第i个温度传感器、湿度传感器和光照传感器对应数据采集时间间隔的时间长度;gc表示预设的时间间隔参考值;g01max、g02max和g03max分别表示温度传感器、湿度传感器和光照传感器对应数据采集时间间隔的时间长度最大值;
23、将所述第一传感器时间间隔系数与预设的时间间隔系数阈值进行比较;
24、当所述第一传感器时间间隔系数超过预设的时间间隔系数阈值时,则对所述人体红外传感器的数据采集时间间隔进行调整。
25、进一步的,当所述第一传感器时间间隔系数超过预设的时间间隔系数阈值时,则对所述人体红外传感器的数据采集时间间隔进行调整,包括:
26、当所述第一传感器时间间隔系数超过预设的时间间隔系数阈值时,提取所述人体红外传感器的数据采集时间间隔;
27、利用所述人体红外传感器的数据采集时间间隔获取第二传感器时间间隔系数,其中,所述第二传感器时间间隔系数通过如下公式获取:其中,f02表示第二传感器时间间隔系数;f0表示预设的系数基准值;f01、f02和f03分别表示温度传感器、湿度传感器和光照传感器对应的时间间隔系数;f04表示人体红外传感器对应的时间间隔系数,并且,所述人体红外传感器对应的时间间隔系数通过如下公式获取:其中,r表示人体红外传感器运行所包含的数据采集时间间隔的个数;g04max表示人体红外传感器对应数据采集时间间隔的时间长度最大值;g04i表示第i个人体红外传感器对应数据采集时间间隔的时间长度;gc表示预设的时间间隔参考值;
28、将所述第一传感器时间间隔系数和第二传感本文档来自技高网...
【技术保护点】
1.实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:包括以下步骤:
2.如权利要求1所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤一中能源评估,具体包括:
3.如权利要求2所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,具体为:
4.如权利要求3所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,还包括:
5.如权利要求4所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,还包括:
6.如权利要求5所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:当所述第一传感器时间间隔系数超过预设的时间间隔系数阈值时,则对所述人体红外传感器的数据采集时间间隔进行调整,包括:
7.如权利要求4所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述节能控制方案的制定,具体包括:
8.如权利要求7所述的实现需求侧响应的建筑热环境与建筑节能
9.如权利要求8所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述确定不同时间段内人员活动水平和室外环境的变化规律,具体包括:
10.如权利要求9所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤三中终端控制监测,具体为:
...【技术特征摘要】
1.实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:包括以下步骤:
2.如权利要求1所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤一中能源评估,具体包括:
3.如权利要求2所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,具体为:
4.如权利要求3所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,还包括:
5.如权利要求4所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其特征在于:所述步骤二中制定控制策略,还包括:
6.如权利要求5所述的实现需求侧响应的建筑热环境与建筑节能控制方法,其...
【专利技术属性】
技术研发人员:张曦,刘魁星,
申请(专利权)人:云栋绿信天津科技有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。