System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind()
【技术实现步骤摘要】
本专利技术属于边坡支护,尤其涉及一种地势起伏场地挡土墙稳定性评价方法及系统。
技术介绍
1、山区等地形起伏区域工程建设时,往往需要提前对工程场地进行填土整平,形成填土与原状土复合地层。当地形起伏较大时,填土层往往较为深厚,填土地层与原状土层力学性质差异较大,对工程稳定性具有重要影响,尤其是边坡工程。
2、专利技术人发现,边坡采用挡土墙支护时,填土与原状土的差异导致边坡破坏模式发生明显改变,作用于挡土墙上的主动土压力也发生变化,进而影响挡土墙稳定性评价;对于地势起伏场地,填土与原状土交界面往往存在较大倾角,且该交界面也多深入挡墙开挖面地表以下,此种情况地层破坏模式更为复杂,原状土与填土交界面倾角、交界面与挡墙交点位置均影响挡土墙土压力及稳定性,而现有挡土墙土压力稳定性评价忽略了原状土与填土交界面倾角和交界面与挡墙交点位置等因素,导致稳定性评价与工程实际存在偏差。
技术实现思路
1、本专利技术为了解决上述问题,提出了一种地势起伏场地挡土墙稳定性评价方法及系统,本专利技术通过土层交界面在水平方向上的倾角,与第一滑动角和第二滑动角的比较,将地层破坏模式划分三种地层破坏模式,针对不同的地层破坏模式,采用不同的破坏模式计算模型,破坏模式计算模型中考虑了滑裂面与土层水平方向的夹角、土层交界面在水平方向上的夹角、基坑开挖深度在两面的交点分离的上下值,以及延伸至地表的新滑裂面与土层水平方向的夹角等参数,考虑了原状土与填土交界面倾角和交界面与挡墙交点位置,能够减小地势起伏场地下挡土墙土压力
2、为了实现上述目的,本专利技术是通过如下的技术方案来实现:
3、第一方面,本专利技术提供了一种地势起伏场地挡土墙稳定性评价方法,包括:
4、根据土层交界面的受力情况,得到用以划分基坑失稳模式的第一滑动角和第二滑动角;其中,所述第二滑动角大于所述第一滑动角,所述第一滑动角为滑裂面与土层水平方向的夹角,所述第二滑动角为延伸至地表的新滑裂面与土层水平方向的夹角;
5、通过土层交界面在水平方向上的倾角,与所述第一滑动角和所述第二滑动角的比较,将地层破坏模式划分为第一地层破坏模式、第二地层破坏模式和第三地层破坏模式;
6、针对所述第一地层破坏模式、所述第二地层破坏模式和所述第三地层破坏模式,分别使用预设的破坏模式一计算模型、破坏模式二计算模型和破坏模式三计算模型进行计算,得到土压力;其中,所述破坏模式一计算模型中,考虑滑裂面与土层水平方向的夹角;所述破坏模式二计算模型中,考虑土层交界面在水平方向上的夹角;所述破坏模式三计算模型中,考虑基坑开挖深度在两面的交点分离的上下值,以及延伸至地表的新滑裂面与土层水平方向的夹角;
7、根据得到的土压力,进行挡土墙的稳定性评价。
8、进一步的,所述第一滑动角α1和所述第二滑动角α2为:
9、
10、其中,为原状土土体的内摩擦角。
11、进一步的,所述破坏模式一计算模型为:
12、
13、其中,ei1为破坏模式一计算模型中的土压力;hi为任意一点的基坑深度;γ1为回填地层土体的容重;α1为滑裂面与土层水平方向的夹角;为土体与下部土体摩擦角;δθ为桩土摩擦角。
14、进一步的,所述破坏模式二计算模型为:
15、
16、其中,ei2为破坏模式一计算模型中的土压力;hi为任意一点的基坑深度;γ1为回填地层土体的容重;α为土层交界面在水平方向上的夹角;为土体与下部土体摩擦角;δθ为桩土摩擦角。
17、进一步的,所述破坏模式三计算模型分别为:
18、
19、其中,ei3为破坏模式一计算模型中的土压力;hi为任意一点的基坑深度;γ1为回填地层土体的容重;γ2为原状矿层土体的容重;h1和h2为基坑开挖深度在两面的交点分离的上下值;α2为延伸至地表的新滑裂面与土层水平方向的夹角;为土体与下部土体摩擦角;δθ为桩土摩擦角;α为土层交界面在水平方向上的夹角。
20、进一步的,如果土层交界面在水平方向上的倾角小于所述第一滑动角,判断为第一地层破坏模式;如果土层交界面在水平方向上的倾角位于所述第一滑动角和所述第二滑动角之间,判断为第二地层破坏模式;如果土层交界面在水平方向上的倾角大于所述第二滑动角,判断为第三地层破坏模式。
21、第二方面,本专利技术还提供了一种地势起伏场地挡土墙稳定性评价系统,包括:
22、滑动角确定模块,被配置为:根据土层交界面的受力情况,得到用以划分基坑失稳模式的第一滑动角和第二滑动角;其中,所述第二滑动角大于所述第一滑动角,所述第一滑动角为滑裂面与土层水平方向的夹角,所述第二滑动角为延伸至地表的新滑裂面与土层水平方向的夹角;
23、破坏模式分类模块,被配置为:通过土层交界面在水平方向上的倾角,与所述第一滑动角和所述第二滑动角的比较,将地层破坏模式划分为第一地层破坏模式、第二地层破坏模式和第三地层破坏模式;
24、土压力计算模块,被配置为:针对所述第一地层破坏模式、所述第二地层破坏模式和所述第三地层破坏模式,分别使用预设的破坏模式一计算模型、破坏模式二计算模型和破坏模式三计算模型进行计算,得到土压力;其中,所述破坏模式一计算模型中,考虑滑裂面与土层水平方向的夹角;所述破坏模式二计算模型中,考虑土层交界面在水平方向上的夹角;所述破坏模式三计算模型中,考虑基坑开挖深度在两面的交点分离的上下值,以及延伸至地表的新滑裂面与土层水平方向的夹角;
25、稳定性评价模块,被配置为:根据得到的土压力,进行挡土墙的稳定性评价。
26、第三方面,本专利技术还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现了第一方面所述的地势起伏场地挡土墙稳定性评价方法的步骤。
27、第四方面,本专利技术还提供了一种电子设备,包括存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,所述处理器执行所述程序时实现了第一方面所述的地势起伏场地挡土墙稳定性评价方法的步骤。
28、第五方面,本专利技术还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时,实现了第一方面所述的地势起伏场地挡土墙稳定性评价方法的步骤。
29、与现有技术相比,本专利技术的有益效果为:
30、1、本专利技术针对地势起伏场地,将滑裂面与土层水平方向的夹角定义为第一滑动角,将延伸至地表的新滑裂面与土层水平方向的夹角定义为第二滑动角;通过土层交界面在水平方向上的倾角,与第一滑动角和第二滑动角的比较,将地层破坏模式划分三种地层破坏模式,针对不同的地层破坏模式,采用不同的破坏模式计算模型,破坏模式计算模型中考虑了滑裂面与土层水平方向的夹角、土层交界面在水平方向上的夹角、基坑开挖深度在两面的交点分离的上下值,以及延伸至地表的新滑裂面与土层水平方向的夹角等参数,考虑了原状土与填土交界面倾角和本文档来自技高网...
【技术保护点】
1.一种地势起伏场地挡土墙稳定性评价方法,其特征在于,包括:
2.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述第一滑动角α1和所述第二滑动角α2为:
3.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式一计算模型为:
4.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式二计算模型为:
5.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式三计算模型分别为:
6.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,如果土层交界面在水平方向上的倾角小于所述第一滑动角,判断为第一地层破坏模式;如果土层交界面在水平方向上的倾角位于所述第一滑动角和所述第二滑动角之间,判断为第二地层破坏模式;如果土层交界面在水平方向上的倾角大于所述第二滑动角,判断为第三地层破坏模式。
7.一种地势起伏场地挡土墙稳定性评价系统,其特征在于,包括:
8.一种计算机可读存储介质,其上存储有计算机
9.一种电子设备,包括存储器、处理器及存储在存储器上并能够在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现了如权利要求1-6任一项所述的地势起伏场地挡土墙稳定性评价方法的步骤。
10.一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,所述计算机程序被处理器执行时,实现了如权利要求1-6任一项所述的地势起伏场地挡土墙稳定性评价方法的步骤。
...【技术特征摘要】
1.一种地势起伏场地挡土墙稳定性评价方法,其特征在于,包括:
2.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述第一滑动角α1和所述第二滑动角α2为:
3.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式一计算模型为:
4.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式二计算模型为:
5.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,所述破坏模式三计算模型分别为:
6.如权利要求1所述的一种地势起伏场地挡土墙稳定性评价方法,其特征在于,如果土层交界面在水平方向上的倾角小于所述第一滑动角,判断为第一地层破坏模式;如果土层交界面在水平方向上的倾角位于所述第一滑动角和所述第二滑动...
【专利技术属性】
技术研发人员:李祥,刘敏,赵凌志,崔成全,闫庆尧,吴圣智,
申请(专利权)人:山东高速工程建设集团有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。