本发明专利技术提出了一种将投影对称性作为先决判断条件的车牌字符特征提取及分类方法。该方法首先将车牌字符中可能出现的26个字母和10个数字以投影对称性作为判断条件进行字符特征提取,将其分为垂直投影对称、水平投影对称、中心点对称,以及无对称特性4大类,从而实现车牌字符的粗分类;经细化处理、归一化变换后,再进行点与环的特征提取并完成车牌字符的细分类。本发明专利技术将投影对称性与点和环的特征提取方法相结合来设定车牌字符分类器,为最终实现车牌字符识别打下基础。该方法对易混淆的字符,如“0”和“D”,“8”和“B”,“7”和“T”等都有较好的识别效果,使车牌字符的识别速度和准确率得到提高。
【技术实现步骤摘要】
本专利技术涉及一种机动车车牌字符图像的自动识别方法,属于模式识别、计算机图像处理
技术介绍
随着交通现代化的发展,机动车车牌自动识别技术已经越来越受到人们的重视。车牌自动识别技术是智能交通系统中的重要组成部分,而车牌字符特征提取的好坏,将直接影响分类器的设定,对提高车牌的速度和识别率有着极为关键的作用。车牌识别技术主要涉及了图像处理、模式识别等方面的技术。而车牌字符的特征提取及分类,将直接影响车牌识别系统的性能。 在模式识别的分类问题中,都将涉及到模式特征的选择与提取的问题。事实上,人们考虑的分类问题都是在特征空间中进行的,即把识别对象的某些特性加以数字化,从而形成特征空间的一个向量,并用此向量来代表所考虑的识别对象。这样,就可以在特征空间中对这些向量加以分类判别。特征提取是一种减少特征数目的方法,通过变换或映射等不同的方法把高维的特征向量变换为低维的特征向量。具体地讲,就是对原始数据进行变换,通过变换将维数较高的原始数据空间中的模式变成维数较低的特征空间中表示的模式,得到最能反映模式分类的本质特征。 在字符识别中,特征是某一类模式的属性或量度,对于不同的识别对象必须考虑不同的特征提取方法,很难有统一的方法和理论。要对字符进行识别,关键一步是在字符中提取恰当的特征作为类别的特征向量。特征向量的选取原则是要既能比较容易的提取又能为识别系统提供一个较高的模式分辨能力,而使得到的特征向量维数尽量少。特征向量已看作是最佳的样本特征属性的度量,它对识别系统的优劣具有决定性的影响,将关系到车牌识别系统的性能和精度,甚至影响到整个系统的成败。 字符的特征提取至今仍是比较热门的研究领域。字符特征提取的方法有很多,主要有以下几种(1)基于图像灰度的方法;(2)基于二值图像特征的方法;(3)基于轮廓特征的方法;(4)基于向量描述的方法;(5)基于神经网络的方法。
技术实现思路
为了提高对车牌的识别率,本专利技术提出一种,根据车牌字符的特点,对车牌中的字符采用了基于投影对称判断和点与环的特征提取相结合的方法,使车牌字符的识别率与识别速度得到提高。 本专利技术采用的基于投影对称判断条件的车牌字符特征提取及分类方法如下 (1)首先对拍摄的车辆图像进行预处理包括对拍摄的彩色车辆图像进行图像灰度化、去噪、二值化、车牌定位和车牌字符分割处理; (2)采用投影对称判断法对车牌字符进行特征提取,从而实现车牌字符的粗分类。首先对经预处理后的单个车牌字符图像分别进行垂直和水平投影,然后对垂直投影图像和水平投影图像进行计算,将其分为垂直投影对称、水平投影对称、中心点投影对称、以及无投影对称四大类; (3)采用数学形态学的击中击不中算法对车牌字符图像进行细化处理; (4)采用比例算法对车牌字符图像进行归一化变换; (5)采用点与环的特征提取方法完成对车牌字符进行细分类,最后实现车牌字符分类器的设定 A、点的特征提取将点的特征提取分为端点、拐点、三叉点和四叉点; B、环的特征提取将字符中具有闭合曲线的特征定义为环,并根据每个字符所拥有的环的个数来判断。 本专利技术在对车牌字符图像投影后,首先采用投影对称法进行特征提取实现粗分类的基础上,再采用点和环的特征提取实现细分类,使易混淆的“0”和“D”、“8”和“B”、“7”和“T”等字符相对于其它的车牌字符特征提取方法实现分类器的设定具有更好的识别效果,使车牌字符的识别率和识别速度得到提高。该方法运用计算机图像处理与模式识别技术,可实现快速、准确的车牌字符特征提取,满足车牌识别系统的准确性和实时性要求。 附图说明 图1为本专利技术所公开的车牌字符特征提取及分类方法流程图; 图2为基于投影对称性的车牌字符特征提取及粗分类算法流程图; 图3为采用点和环的车牌字符特征提取及细分类算法流程图。 具体实施例方式 下面结合附图对本专利技术做进一步说明 本专利技术的车牌字符特征提取及分类方法流程如图1所示。首先对拍摄的彩色车辆图像进行图像灰度化、去噪、二值化、车牌定位和车牌字符分割等预处理后,采用投影对称判断法对车牌字符进行特征提取并实现粗分类;经细化处理及归一化变换后,再采用点与环的特征提取方法实现对车牌字符的细分类。本专利技术将投影对称判断与点和环的特征提取方法相结合实现对车牌字符分类,使车牌字符的识别速度和准确率得到提高。 一、对车牌图像的预处理 (1)首先将拍摄的原始彩色图像转换为灰度车辆图像; (2)图像二值化的关键是阈值的选取,本专利技术采用了最大类间方差法对图像进行二值化,能有效地克服光照不均匀的影响。最大类间方差法在二值化时,首先将直方图在某一阈值处分割成两组,当被分成的两组间方差为最大时,即为阈值T。经二值化后,突出了车牌图像区域的特征,使得图像区域和背景对比更加明显。此方法不论图像的直方图有无明显的双峰,都能得到较满意的结果; (3)由于二值化后的图像难免会存在噪声和边缘干扰,本专利技术采用数学形态学的开运算方法来滤除孤立点噪声。先腐蚀后膨胀的过程称为开运算,主要用来消除较小的噪声,能较好地保留车辆图像边缘的细节; (4)在车牌定位的过程中,利用车辆图像区域的二值像素跳变规律,先定位出车牌的水平位置,再定位出车牌的垂直位置,从而得到准确的车牌图像; (5)针对车牌图像固有的比例特征(10∶3),采用投影法对车牌字符进行分割,将车牌字符分割成一个个单一的字符,便于后续的车牌字符特征提取及分类。 二、基于投影对称性的车牌字符特征提取并实现粗分类 图2是对经预处理后的单个车牌字符图像采用投影对称法进行特征提取并实现粗分类的流程图。首先分别对车牌字符进行垂直和水平投影,将投影图置于坐标系中,其中横坐标从0到40,纵坐标从0到80。然后对垂直投影图像和水平投影图像进行计算,将其分为垂直投影对称、水平投影对称、中心点投影对称、以及无投影对称四大类。 (1)对垂直投影图像从左右向中间同时扫描,把左边第一个出现黑色像素的横坐标值记为m,纵坐标的值赋给i,右边第一个出现黑色像素的横坐标值记为n,纵坐标的值赋给j,同时设定一个计数器k(初值k=0)。如果|i-j|<3,即像素差值在3以内,则认为此时i等于j,计数器k加1;如果|i-j|>3,即像素差值大于3,则认为此时i不等于j,计数器k的值不变。同时,指针继续向图像中间扫描直至中点为止。由于归一化处理后的字符图像宽度为40个像素,所以当扫描到图像中点时,如果计数器k的值大于(n-m)/2-4,即认为该字符的垂直投影具有对称的特性,并将该字符分为具有垂直投影对称特性的类; (2)对水平投影图像从上下向中间同时扫描,把下面第一个出现黑色像素的纵坐标值记为m,横坐标的值赋给i,上面第一个出现黑色像素的纵坐标值记为n,横坐标的值赋给j,同时设定一个计数器k(初值k=0)。如果|i-j|<3,即像素差值在3以内,则认为此时i等于j,计数器k加1;如果|i-j|>3,即像素差值大于3,则认为此时i不等于j,计数器k的值不变。同时,指针继续向图像中间扫描直至中点为止。由于归一化处理的字符图像高度为80个像素,所以当扫描到图像中点时,如果计数器k的值大于(n-m)/2-8,即认为该字符的水平投影具有对称的特性本文档来自技高网...
【技术保护点】
基于投影对称性的车牌字符特征提取及分类方法,所述方法是将投影对称判断和点与环的特征提取方法相结合来设定车牌字符分类器,实现对车牌字符的分类,其包括以下步骤:(1)首先对拍摄的车辆图像进行预处理:包括对拍摄的彩色车辆图像进行图像灰度化、去噪、二值化、车牌定位和车牌字符分割处理;(2)采用投影对称判断法对车牌字符进行特征提取:对经预处理后的单个车牌字符图像分别进行垂直和水平投影,然后对垂直投影图像和水平投影图像进行计算,将其分为垂直投影对称、水平投影对称、中心点投影对称、以及无投影对称四大类,从而实现车牌字符的粗分类;(3)采用数学形态学的击中击不中算法对这四大类的车牌字符图像分别进行细化处理;(4)采用比例算法对细化处理后的车牌字符图像进行归一化变换;(5)采用点与环的特征提取方法对车牌字符进行细分类,使其对易混淆的车牌字符得到有效地区分,实现分类器的设定。
【技术特征摘要】
【专利技术属性】
技术研发人员:李志敏,王浩,梁军,常宇,张慧,
申请(专利权)人:重庆大学,
类型:发明
国别省市:85[中国|重庆]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。