System.ArgumentOutOfRangeException: 索引和长度必须引用该字符串内的位置。 参数名: length 在 System.String.Substring(Int32 startIndex, Int32 length) 在 zhuanliShow.Bind() 一种变电站无人机飞行状态监测及预警方法、系统技术方案_技高网

一种变电站无人机飞行状态监测及预警方法、系统技术方案

技术编号:40274289 阅读:15 留言:0更新日期:2024-02-02 23:00
本发明专利技术记载一种变电站无人机飞行状态监测及预警方法及系统,包括以下步骤:S1、在多维飞行数据矩阵X中找到一个低维的内部子空间矩阵U作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵U的行向量为原始输入中相应飞行参数的向量化表示;S2、以投影近似方式更新子空间向量,通过追踪和匹配子空间方向变化实现飞行数据瞬时异常检测;S3、根据LSTM对时间序列的预测特点,构建基于LSTM的无人机飞行数据异常点位轨迹预测模型;S4、根据余弦相似性方法计算规划轨迹和预测轨迹的相似度,当相似度低于阈值时系统报警。本发明专利技术通过检测无人机在变电站运维时的飞行数据是否发生异常,判断无人机的飞行状态是否安全。

【技术实现步骤摘要】

本专利技术涉及变电站监测,具体来说是一种变电站无人机飞行状态监测及预警方法、系统


技术介绍

1、在传统的变电站运行环境监测过程中常常使用人力巡检的方式保证变电站的运行安全,中低空设备缺陷隐患已能及时发现、排除,而站内高空设备因存在巡视盲区而导致其缺陷隐患十分隐蔽,此类缺陷所占比创日渐增高,给变电站安全稳定运行带来新的安全风险。无人机的快速机动性和对高空设备全覆盖的特殊巡检能力,对降低变电站设备运行风险、补齐无人化巡视短板、提高精益化运维水平有着至关重要的作用。

2、当前无人机在变电站巡检过程中已出现无法稳定飞行、甚至坠机等问题。如无人机搜星数量不足导致无法起飞、飞行前磁罗盘未校准导致无法起飞。飞行过程中强电磁场会干扰无人机电子陀螺仪、磁罗盘正常工作,造成无人机进入姿态模式,使得无人机无法稳定悬停或者飞行,甚至发生坠机事故。而且,无人机系统不会比较实时路径与预先规划的路径是否发生偏移,需要人工判断,这导致当前的飞行过程中,缺少飞行过程状态快速预警手段。因此如果能实时监测无人机关键系统的数据情况,就能尽早给出预警提示,确保有效的飞行控制操作,从而降低事故率,使飞行变得更加安全和可靠。

3、无人机飞行监测方面,近年国内外对无人机结构、建模、控制等方面研究进展迅速,但对于无人机实时飞行状态的监测与评估却比较少,已开发出的检测系统也是针对无人机控制系统、故障诊断和续航能力的评估,尚无专门的监测无人机性能指标,安全隐患突出,需通过外部快速监测系统,实现独立于飞控系统决策级别的外围决策对紧急情况进行预警。

r/>

技术实现思路

1、本专利技术所要解决的技术问题在于现有技术中尚且没有专门监测无人机飞行过程中的性能指标的技术。

2、本专利技术通过以下技术手段实现解决上述技术问题的:

3、一种变电站无人机飞行状态监测及预警方法,包括以下步骤:

4、s1、在多维飞行数据矩阵x中找到一个低维的内部子空间矩阵u作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵u的行向量为原始输入中相应飞行参数的向量化表示;

5、s2、以投影近似方式更新子空间向量,通过追踪和匹配子空间向量方向变化实现飞行数据瞬时异常检测;

6、s3、根据lstm对时间序列的预测特点,构建基于lstm的无人机飞行数据异常点位轨迹预测模型;

7、s4、根据余弦相似性方法计算规划轨迹和预测轨迹的相似度,当相似度低于阈值时系统报警。

8、本专利技术记载的一种变电站无人机飞行状态检测及预警方法,通过检测无人机在变电站运维时的飞行数据是否发生异常,判断无人机的飞行状态是否安全,所谓异常数据,是指数据表现为不同于所设定的正常模式或与正常数据偏差过大的现象,异常数据可能导致控制率解算不稳定或不期望的飞行控制发生,从而影响无人机自身和周围的飞行安全以及任务的完成,因此,需要尽可能快和准确地判断当前数据输入的异常状态,首先针对无人机实时飞行数据,利用子空间学习方法对飞行数据进行降维,降低飞行数据的在线运算量,降维后的飞行数据具有强烈的代表性,用低秩约束后的部分子空间对多维飞行数据建模,通过度量无人机飞行过程中的子空间向量变化,实现飞行数据点异常在线检测;其次检测到飞行数据异常时,利用lstm神经网络预测异常点位的轨迹,通过相似度算法对比两种轨迹的误差,当相似度小于设定的阈值时即报警,从而实现无人机飞行异常状态的预警。

9、进一步的,所述步骤s1中,多维飞行数据矩阵矩阵x每一行的行向量如[x1,1,x1,2,…,x1,t]就是飞行数据的某一个参数,在无人机实时多维飞行数据矩阵x中找到一个低维的内部子空间矩阵作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵u的行向量如[u1,1,u1,2,…,u1,k]为原始输入中相应飞行参数的向量化表示,其中,k≤n;

10、无人机在变电站巡检时,当前时刻t的数据输入xt可作为xt-1的新的一列,则时刻t的飞行数据矩阵xt可表示为:

11、xt=[xt-1 xt]

12、将矩阵xt分解为子空间矩阵和辅助向量矩阵的乘积:

13、

14、其中,是当前时刻的子空间矩阵,辅助矩阵为是重构的数据,符号t是转置运算。

15、进一步的,所述步骤s1中子空间矩阵计算过程为:

16、多维飞行数据输入xt若存在缺失,原始输入只有部分被有效地观察到,设有效观察索引的集合是ωt,则xω(t)是原始输入xt对应于集合ωt的行子向量,

17、

18、其中,是哈达玛积,是n×1向量,g是预定义的缺失形状,如果j∈g,否则

19、获得权重wt和残差et:令uω(t-1)是ut-1对应于有效观察索引集合ωt的行子矩阵,权重wt被定义为:

20、

21、也是将xω(t)正交投影到uω(t-1)所得到子空间的权重集合,+为广义逆矩阵符号,然后,令当前观察的残差向量et为:

22、

23、获得子空间矩阵:令xt-1在t-1时刻的秩矩阵分解是恢复的飞行数据流矩阵可以被定义为:

24、

25、令上式的中心矩阵为:

26、

27、其中,原始和中,对应于中最小奇异值的末尾列将被丢弃,令是原始丢弃末尾列和末尾行而获得的对角矩阵;

28、当前时刻t,子空间矩阵更新为:此外,辅助矩阵最终,当前t时刻的飞行数据矩阵分解为其是新的秩分解,子空间矩阵和辅助矩阵都可迭代更新;

29、为了进一步减少内存需求,无需恢复t时刻所有飞行数据只需恢复t时刻的飞行数据因此,

30、

31、其中,的最后一列是t时刻的辅助向量,因此,子空间矩阵近似估计ut和辅助向量rtt都可递推计算,重构出原始数据为:

32、

33、进一步的,所述步骤s2中检测是否发生数据异常的过程为:

34、在t时刻,给定具有相同的k维低秩子空间的n维飞行数据输入向量飞行数据的在线子空间学习目标函数为最小化每个时刻输入向量的l2范数重构误差:

35、

36、式-1中,ui为包含k个子空间向量的子空间矩阵,xi为第i个原始飞行数据输入,uixi为第i个原始数据向数据子空间投影,uiuixi是从投影子空间重构估计得到的第i个xi,

37、飞行数据在时序方向上相邻的子空间具有相似性,即其中,为前一个时刻估计的数据子空间,用投影向量估计并施加遗忘因子β,目标函数(式-1)转化为:

38、

39、其中,遗忘因子β∈(0,1)用来降低过去时刻数据的对当前时刻学习的影响,

40、如果满足式-3的条件,则目标函数(式-2)右侧xi的数据重构误差数据误差可以最小化:

41、

42、

43、

44、进一步,将式-3转化为迭代形式如式-4所示:

45、<本文档来自技高网...

【技术保护点】

1.一种变电站无人机飞行状态监测及预警方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤S1中,多维飞行数据矩阵矩阵X每一行的行向量如[x1,1,x1,2,…,x1,t]就是飞行数据的某一个参数,在无人机实时多维飞行数据矩阵X中找到一个低维的内部子空间矩阵作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵U的行向量如[u1,1,u1,2,…,u1,k]为原始输入中相应飞行参数的向量化表示,其中,k≤n;

3.根据权利要求2所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤S1中子空间矩阵计算过程为:

4.根据权利要求3所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤S2中检测是否发生数据异常的过程为:

5.根据权利要求1所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤S3中LSTM神经网络搭建过程为:

6.一种变电站无人机飞行状态监测及预警系统,其特征在于,包括:

7.根据权利要求6所述的一种变电站无人机飞行状态监测及预警系统,其特征在于,所述子空间矩阵计算模块中,多维飞行数据矩阵矩阵X每一行的行向量如[x1,1,x1,2,…,x1,t]就是飞行数据的某一个参数,在无人机实时多维飞行数据矩阵X中找到一个低维的内部子空间矩阵作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵U的行向量如[u1,1,u1,2,…,u1,k]为原始输入中相应飞行参数的向量化表示,其中,k≤n;

8.根据权利要求7所述的一种变电站无人机飞行状态监测及预警系统,其特征在于,所述子空间矩阵计算模块中子空间矩阵计算过程为:

9.根据权利要求7所述的一种变电站无人机飞行状态监测及预警系统,其特征在于,所述异常检测模块中检测是否发生数据异常的过程为:

10.根据权利要求6所述的一种变电站无人机飞行状态监测及预警系统,其特征在于,所述预测模型构建模块中LSTM神经网络搭建过程为:

...

【技术特征摘要】

1.一种变电站无人机飞行状态监测及预警方法,其特征在于,包括以下步骤:

2.根据权利要求1所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤s1中,多维飞行数据矩阵矩阵x每一行的行向量如[x1,1,x1,2,…,x1,t]就是飞行数据的某一个参数,在无人机实时多维飞行数据矩阵x中找到一个低维的内部子空间矩阵作为原始飞行数据有意义和存储轻量的数据表示,子空间矩阵u的行向量如[u1,1,u1,2,…,u1,k]为原始输入中相应飞行参数的向量化表示,其中,k≤n;

3.根据权利要求2所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤s1中子空间矩阵计算过程为:

4.根据权利要求3所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤s2中检测是否发生数据异常的过程为:

5.根据权利要求1所述的一种变电站无人机飞行状态监测及预警方法,其特征在于,所述步骤s3中lstm神经网络搭建过程为:

6.一...

【专利技术属性】
技术研发人员:赵常威黄伟民李坚林杨为柯艳国李永熙钱宇骋李森林王署东谢铖
申请(专利权)人:国网安徽省电力有限公司电力科学研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1