基于经验模态分解和数值集合预报的短期气候预测方法技术

技术编号:4004178 阅读:272 留言:1更新日期:2012-04-11 18:40
本发明专利技术公布了一种基于经验模态分解和数值集合预报的短期气候预测方法,本发明专利技术使用数值集合预报技术与均生函数逐步回归模型相整合的方式,并结合了经验模态分解(EMD)这种处理数据序列的新方法,首先将非平稳的气候数据序列分解成平稳的、多尺度特征的本征模态函数分量(IMF),再对每一个IMF使用集合预报与逐步回归分析相结合的方式构建不同的预报模型,最后线性拟合成预报结果。使用本发明专利技术的系统进行短期气候预测时,用户可以根据实际数据需要截取指定的序列长度和预报长度,并且针对性的选取集合预报过程中的预报模型参数。本发明专利技术相对于直接预测和单一预测方法,对于气候的变化趋势以及突发性气候具有更好的预报能力。

【技术实现步骤摘要】

本专利技术涉及一种基于经验模态分解和集合预报技术对气候序列数据(20-50年) 的短期预测(5-10年),适用于对气候突发性变化需要敏感把握的情况,如霜冻(降温)、暴 雨等灾害性天气。
技术介绍
气候预测是大气科学的一个重要分支,而气候变化的预测则又是各级气象台站开 展业务短期气候预测的最主要内容之一。气候系统是一种耗散的、具有多个不稳定源的高阶非线性系统,其复杂的内部相 互作用和自由变化导致了气候的可变性和复杂性,也导致了气候变化的多尺度特性。由 于目前我们对岩石圈、水圈、冰雪圈、生物圈(包括人类活动)的了解甚少,所积累的资料精 度和完备性十分不足,因此就目前人类对气候系统的了解而言,要建立起精确的反映气候 系统变化的非线性动力学方程组是不可能的,这就给气候变化预测的动力学理论研究带 来了极大的困难。就目前来说,我们赖以进行短期气候预测工作的根据有两个方面一是对气候变 化进行了严密的监视,利用各种仪器在全球范围进行了定时观测,从而积累了关于它过去 和现在情况的大量数据;二是气候系统为一物理系统,通过物理学和数学的研究,获知了一 些气候变化应遵循的物理规律,并可以用数学语言来表示。第二种方法实际上就是一种 时间序列预测方法。时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。 时间序列预测方法的基本思想是在预测一个现象的未来变化时,用该现象的过去行为来 预测未来。即通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未 来,从而对该现象的未来做出预测。随着计算机技术的发展,特别是自从著名统计学家Box 和Jenkins于1968年发展了一整套随机时间序列的模型识别、参数估计和诊断检验的经典 建模方法以来,时间序列预测的发展非常迅速,在气象、天文、电力、医学、生物、经济、金 融和计算机等各个领域已有广泛的应用,并日益显示出强大的生命力和重要性,已成为一 门独立的重要数学分支。迄今已有不少专家、学者从事这方面的研究,并建立了一套比较完 整的理论和应用体系。本专利技术是一种针对气候的预测方法,属于时间序列预测的一种,而考虑到气候系 统的特殊性,在预测过程中加入了两种对数据序列的处理,即经验模态分解(Empirical ModeDecomposition, EMD)和集合预报技术。EMD方法从本质上讲是对一个信号(或其导 数,视所需的分解精度而定)进行平稳化处理,其结果是将信号中不同尺度的波动或趋势 逐级分解开来,产生一系列具有不同特征尺度的数据序列,每一个序列称为一个本征模函 数(Intrinsic Mod Function, IMF)分量,不同的分量成为了平稳信号,使得后面的数据预 测等处理更加合理、有效。集合预报是针对单一模式预报不确定性而引入到数值预报中的, 它过滤了预报中的随机成分,从而能获得一个相对稳定的预报结论,本专利技术中将序列值根据预先指定的成员数进行处理,重新组合再求集合平均,以期得到不稳定解的概率降低。参考文献林振山,杨修群.理论气候学.南京南京大学出版社,1996.林振山.气候建模、诊断和预测的研究.北京气象出版社,1996.尤卫红.气候变化的多尺度诊断分析和预测的多种技术方法研究.北京 气象出版社,1998.林振山,邓自旺,尤卫红.理论气候学中的几个基本问题.热带气象学报, 1995,11 (2) 187-192.胡增臻,黄荣辉.长期天气预报业务和方法研究的最新进展.气象科技, 1993, (1) 1-10.尤卫红.对云南省气象台近年来长期天气预报的检验.云南气象,1992, (2) 30-31.Pawlak Z.Rough Sets International Journal of Computer and information Science,1982,11(5) :341_356.Hu Xiao Hua, Cercone N. Learning in relational databases :a rough set approaeh Computational Intelligence,1995,11 (2) :323_337.王国胤,于洪,杨大春.基于条件信息熵的决策表约简.计算机学报,2002, 25(7) 759
技术实现思路
本专利技术目的是针对气候数据序列的不稳定和非线性特征提供一种复合方式的气 候预测方法。将经验模态分解方法与均生函数逐步回归模型以及集合预报技术相结合,进 行气候预测。该专利技术对于气候的变化趋势以及突发性气候具有更好的预报能力。本专利技术为实现上述目的,采用如下技术方案本专利技术,包括以下几个步 骤(1)对数据进行z-score标准化处理将原始输入序列A的原始值v使用z-score 标准化到标值v',即v =v-A/6a其中Z和o A分别为原始输入序列的均值和标准差;(2)将步骤⑴所述的标值v'用EMD算法分解,得出n个IMF分量和一个趋势分 量,其中n为大于1的自然数;(3)将步骤(2)所述分解出的n个IMF分量分别用数值集合预报方法进行处理,其 中行数即为成员数s ;随机指定每一行去掉的元素,预报元素逐行减少,最终构成一个拥有 S行的变长序列组;(4)最后对步骤(3)所述的由IMF分量处理所得的序列组构建均生函数模型,预测 计算并记录结果,然后将每组的结果拟合成一个IMF分量的预报结果,最后再将n个包含不 同特征的预报结果线性拟合成最终预报解。优选地,步骤(2)所述的经验模态分解算法EMD,在分解的筛选过程中,采用设置 两个连续的迭代结果之间的标准差SD的大小在0. 2到0. 3之间,且最大迭代次数为200作 为追加的停止条件,采用极值延拓法来拟合序列的端点极值。优选地,步骤(2)所述的n个IMF分量和一个趋势分量中,第一个IMF分量对应随 机成分,第一至第n个IMF分量对应周期成分,趋势分量即残差Rn对应趋势成分。优选地,步骤(3)中所述每一行中的元素,零值不参与预报。本专利技术基于经验模态分解和集合预报技术的短期气候预测方法,根据气候时间序 列的非线性、非平稳特性,首先利用经验模态分解技术对时间序列进行平稳化处理,在保留 时间序列本身特征的基础上减少序列间的干扰或耦合信息,再利用集合预报技术与均生函 数逐步回归模型相结合的方式进行时间序列预测。相对于单一使用均生函数逐步回归的方 法,可以有效提高预测准确度,特别适合处理逐年降水或温度变化的非平稳气候时间序列。附图说明图1是基于经验模态分解和数值集合预报技术的气候时序预测方法的方法流程 图;图2是对气候时间序列进行经验模态分解的具体处理流程图;图3是使用集合预报和均生函数逐步回归模型相结合的预测方法流程图。具体实施例方式下面结合附图对专利技术的技术方案进行详细说明本专利技术基于经验模态分解这种全新的处理序列数据的方法,首先将非平稳非线性 的数据序列分解成若干个代表一组特征尺度的新数据序列,先将原始数据序列分解为各种 不同特征波形的叠加。其中最关键的一步是通过信号的极值点拟合信号包络线,本专利技术采 用的是应用最广泛的三次样条插值函数法。三次样条函数需要信号两端数据的一阶或二阶 导数作为其边界已知条件,而由EMD算法的原理可知,无法直接获得两端点对应的极值,针 对本专利技术在短期气候预测方面本文档来自技高网
...

【技术保护点】
一种基于经验模态分解和数值集合预报的短期气候预测方法,其特征在于包括以下几个步骤:(1)对数据进行z-score标准化处理:将原始输入序列A的原始值v使用z-score标准化到标值v′,即v′=v-*/σ↓[A],其中*和σ↓[A]分别为原始输入序列的均值和标准差;(2)将步骤(1)所述的标值v′用EMD算法分解,得出n个IMF分量和一个趋势分量,其中n为大于1的自然数;(3)将步骤(2)所述分解出的n个IMF分量分别用数值集合预报方法进行处理,其中行数即为成员数s;随机指定每一行去掉的元素,预报元素逐行减少,最终构成一个拥有s行的变长序列组;(4)最后对步骤(3)所述的由IMF分量处理所得的序列组构建均生函数模型,预测计算并记录结果,然后将每组的结果拟合成一个IMF分量的预报结果,最后再将n个包含不同特征的预报结果线性拟合成最终预报解。

【技术特征摘要】

【专利技术属性】
技术研发人员:毕硕本陈譞徐寅王必强马燕
申请(专利权)人:南京信息工程大学
类型:发明
国别省市:84[中国|南京]

网友询问留言 已有1条评论
  • 来自[美国加利福尼亚州圣克拉拉县山景市谷歌公司] 2015年01月09日 12:43
    短期在劳动经济意义:只要改变劳动投入数量的时间范围在这个时间阶段资本数是不变的。
    0
1