本发明专利技术公开了一种塑料注射成形中冷却时间的快速预测方法。通过已知的塑料和模具参数等,预测所需冷却时间的方法。具体实现方案是:(1)分析冷却时间的主要影响因素;(2)设计神经网络训练的样本;(3)设计和训练BP神经网路;(4)建立冷却时间快速预测模型;(5)通过实例来验证该模型的优越性。利用本发明专利技术可以快速准确的预测塑料注射成型的冷却时间,对缩短模具设计制造周期、提高制造精度与性能有重要作用。
【技术实现步骤摘要】
本专利技术涉及塑料注射成型领域,尤其涉及一种塑料注射成形中冷却时间的快速预 测方法。
技术介绍
在市场经济条件下,产品的质量与成本已成为企业生存发展的生命线。实践证明, 注射成型CAE技术对加快新产品开发、提高产品质量、降低成本起着关键作用,是支持企业 确立竞争优势的强有力的手段。随着塑料工业的飞速发展,塑料注射模传统的手工设计与 制造已无法适应当前的形势。20年来的实践表明,缩短模具设计与制造周期、提高塑料制造 精度与性能的正确途径之一是采用CAD/CAE/CAM技术。80年代以来,注射模CAD/CAM技术 已从实验室研究阶段进入了实用化阶段,并在生产中取得了明显的经济效益。注射模CAD/ CAM技术的发展和推广被公认为CAD技术在机械工业中应用的一个典范,目前正在向网络 化、微机化、智能化、集成化、三维化发展。
技术实现思路
本专利技术的目的在于提出一种,综合影响 冷却时间的主要因素,通过冷却时间快速预测模型计算出较准确的冷却时间,对缩短模具 设计制造周期、提高制造精度与性能有重要作用。采用的具体技术方案如下一种,包括如下步骤(1)确定冷却时间的主要影响因子,即模具材料的导温系数a工、塑料材料的导温 系数a 2、温度比值(Ti-TC)/(Te-TC),(其中Ti为注射温度、Tc为冷却水的温度、Te为开 模温度)、制品的厚度h以及冷却系统的面积S,并给每个影响因子设置多个不同的水平。(2)设计神经网络训练的样本空间对上述确定的影响因子及其水平进行优化组合,将优化组合后的结果作为输入 值,用CAE软件模拟出冷却时间的大小,作为输出值,构成神经网络训练的样本空间。(3)设计和训练反向传播神经网路即BP神经网络,具体过程如下①确定网络的层数理论上已经证明具有偏差和至少一个S型隐含层加上一个线性输出层网络,能 够逼近任何有理函数。增加层数主要可以更进一步的降低误差,提高精度,但同时也使网络 复杂化,从而增加了网络权值的训练时间和出现“过拟合”的倾向。所以一般情况下,选用 三层的BP神经网络,即输入层,隐含层,输出层。②初始化参数在初始化之前,对输入值和输出值其进行归一化处理,使其最大值和最小值均在 0 1之间。由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛以及 训练时间的长短的关系很大。在MATLAB工具箱中一般采用激活函数nwlog.m(该激活函数为对数S型)或nwtan.m(该激活函数为双曲正切S型)来初始化隐含层的权值W1和阈值 B1,采用随机取值函数rands, m来初始化输出层的权值W2和阈值B2。③确定学习速率学习速率的选取范围在0. 01-0. 08之间。学习速率决定每一次循环训练中所产生 的权值变化量。大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时 间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差 值。所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性。④确定隐含层的神经元节点数在BP神经网络中,隐含层神经元节点数对建立的神经网络模型的性能影响很大。 神经元节点数太少,神经网络不能很好的学习,训练需要的循环次数也多;神经元节点数越 多,功能越大,循环次数也就是训练时间也随之增加,同时也会导致出现“过拟合”的情况。 隐含层神经元节点数一般在2-25之间。本专利技术在相同的期望误差下,针对不同的神经元节 点数进行训练对比,循环次数最少的情况即为最佳隐含层神经元节点数。⑤选取期望误差在设计BP神经网络的过程中,期望误差也要通过对比训练后才能确定。通过对不 同期望误差下的BP神经网络进行训练,所需循环次数最少的,即确定为最佳期望误差。利用MATLAB下的神经网络工具箱进行训练的流程图如图1所示。(4)建立冷却时间快速预测模型将训练所得的神经元节点数和期望误差写入MATLAB神经网络工具箱,训练生成 BP神经网络模型。在VC++环境下实现冷却时间的快速预测的界面化。其流程图如图2所7J\ o通过冷却时间快速预测模型,能快速的预测出冷却时间,对缩短模具设计制造周 期、提高制造精度与性能有重要作用。附图说明图1为在MATLAB中训练BP神经网络流程2为冷却时间快速预测模型程序实现流程3为冷却时间快速预测模型设计流程图具体实施例方式以下结合附图和具体实施例对本专利技术做进一步说明。本文基于一个平板类零件研究。(1)确定冷却时间的主要影响因子,即模具材料的导温系数a工、塑料材料的导温 系数a2、温度比值(Ti-TC)/(Te-TC),(其中Ti为注射温度、Tc为冷却水的温度、Te为开模 温度)、制品的厚度h以及冷却系统的面积S,并给每个影响因子设置三个不同的水平。选 取制品的长为120mm,宽为30mm,厚度分别取为2mm,5mm,8mm三个水平,其他影响因子及其 水平如表1所示。模具的大小均为180mmX 50mmX 50mm。表1冷却时间影响因子水平设计表 (2)设计神经网络训练的样本空间本实施例采用田口试验设计方法对这五个影响因子及其三个水平进行优化组合, 以通过数目较少的实验可以获得在所有影响因子在不同水平条件下的最优水平组合。本发 明选用了 L27 (35)正交实验表,将优化后的水平组合作为输入值,用HsCAE软件模拟出冷却 时间的大小,作为输出值,作为神经网络训练的样本空间,如表2所示。表2五因子三水平正交实验表 (3)设计和训练反向传播神经网路即BP神经网络BP神经网络是一种多层网络结构,相邻层之间为单向完全连接。它采用类似“黑 盒”的方法,通过学习和记忆,模拟输入和输出间的映射关系,比较适合自变量与因变量间 无理想数学表达式的复杂系统。具体应用BP神经网络的计算原理如下(1)向前传播阶段隐含层第j个神经元的输出为 (1)式中,为隐含层激活函数,m为输入层神经元数,1为隐含层神经元数,为隐 含层第j个神经元与输入层第k个神经元之间的权值;xk为输入层第k个神经元的输入值; bj为隐含层第j个神经元的阈值; 输出层第i个神经元的输出为 (2)式中,f2为输出层激活函数,n为输出层神经元数,Wij为输出层第i个神经元与隐 含层第j个神经元之间的权值办为输出层第i个神经元的阈值。输出层的输出误差为 式中,、为第i个神经元的目标输出。 (2)误差向后传播阶段按照5规则,连接权值与阈值的调整增量Aw应与误差梯度成比例,即 式中,n为学习速率。输出层权值变化。对从第j个输入到第i个输出的权值、阈值调整量为 隐含层权值变化。对从第k个输入到第j个输出的权值、阈值调整量为 (8)本实施例中的具体过程如下 1.确定网络的层数本专利技术的输出层为1,即注塑模的冷却时间,选取27个典型样本作为输入层,隐含层数为1层,网络为三层。2.初始化参数首先,在初始化参数之前,先对输入值和输出值进行归一化处理,使其最大值和最 小值均在0 1之间。用小的随机数对隐含层和输出层的权值W和阈值B初始化,以保证网络不被大的 加权输入饱和。具体过程如下 = nwtan (SI, R) ;// 用 nwtan. m 给隐含层权值赋值 = rands (S2,SI) ;// 用 rands, m 给输出层权值赋值3.确定学习速率大的学习速率可能导致系统的不稳定,但本文档来自技高网...
【技术保护点】
一种塑料注射成形中冷却时间的快速预测方法,该方法包括以下步骤:(1)确定冷却时间的影响因子,并给每个影响因子设置多个不同的水平所述影响因子包括模具材料的导温系数α↓[1]、塑料材料的导温系数α↓[2]、温度比值(Ti-Tc)/(Te-Tc),制品的厚度h以及冷却系统的面积S,其中Ti为注射温度、Tc为冷却水的温度、Te为开模温度;(2)设计神经网络训练的样本空间对上述各影响因子及其水平采用田口实验设计方法进行优化组合,将优化组合后的结果作为输入值,用CAE软件模拟出冷却时间的大小,作为输出值,构成神经网络训练的样本空间;(3)设计和训练反向传播神经网路即BP神经网络,具体过程如下:①确定网络的层数选用三层的BP神经网络,所述三层分别为输入层,隐含层和输出层;②初始化参数在MATLAB工具箱中采用激活函数nwlog.m或nwtan.m来初始化隐含层的权值W1和阈值B1,采用随机取值函数rands.m来初始化输出层的权值W2和B2;③确定学习速率所述学习速率的选取范围在0.01-0.08之间;④确定所述隐含层的神经元节点数针对不同的神经元节点数进行训练对比,将循环次数最少的情况确定为最佳隐含层神经元节点数;⑤选取期望误差对不同期望误差下的BP神经网络进行训练,所需循环次数最少的期望误差确定为最佳期望误差;(4)建立冷却时间快速预测模型将训练所得的神经元节点数和期望误差写入MATLAB神经网络工具箱,训练生成BP神经网络模型,并根据上述BP神经网络模型实现冷却时间的快速预测的界面化,从而实现对塑料注射成形中冷却时间的快速预测。...
【技术特征摘要】
【专利技术属性】
技术研发人员:李德群,崔树标,赵朋,周华民,李阳,黄志高,张云,刘畅,
申请(专利权)人:华中科技大学,
类型:发明
国别省市:83[中国|武汉]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。