【技术实现步骤摘要】
癫痫间期脑电波异常信号的定位方法、装置、设备及介质
[0001]本申请属于信号处理领域,尤其涉及一种癫痫间期脑电波异常信号的定位方法、装置、设备及介质。
技术介绍
[0002]癫痫是大脑神经元突发性异常放电,导致短暂的出现大脑功能障碍的一种慢性疾病。在相关技术中,通过对患者的脑电信号进行分析,可有助于研究患者的病情,分析治疗效果。
[0003]由于脑电图(EEG,Electroencephalogram)具有技术成熟、操作简便、非侵入性等特点,因此,在癫痫诊断领域,通常使用脑电图来对患者进行病情分析。然而,对于发作间隔长、发作次数少的癫痫类别,即使通过长程EEG监测也很难捕捉到一次癫痫发作,临床医生通常仅能通过捕捉间期癫痫性放电的方式来对患者进行确诊。因此,癫痫间期放电信号的识别和定位是诊断患者是否患有一类癫痫疾病的关键。
[0004]然而,脑电波信号的监测时间较长、数据量较大,且缺乏定量化和自动化检测手段,在相关技术中,通常采用人工主观判断癫痫间期的放电信号,并手动标注的方式来对癫痫间期放电信号进行定位。而该方式需要人工耗费较长的时间读脑电图,而且,脑电图的长度通常较长,人工主观判断和手动标注的放电信号存在误差,无法对癫痫间期的放电信号进行精准定位。
技术实现思路
[0005]本申请实施例提供一种癫痫间期脑电波异常信号的定位方法、装置、设备及介质,能够提高脑电波信号中异常信号的定位精准度。
[0006]第一方面,本申请实施例提供一种癫痫间期脑电波异常信号的定位方法,该方法包括 ...
【技术保护点】
【技术特征摘要】
1.一种癫痫间期脑电波异常信号的定位方法,其特征在于,包括:获取多个电极所采集到的目标对象在癫痫发作间期的脑电波信号,其中,所述多个电极分别设置在所述目标对象的头部的不同位置;对每个电极所采集到的脑电波信号进行独立分量分析,从所述每个电极所采集到的脑电波信号中去除伪差信号,得到所述每个电极所对应的增强信号;基于预设的多个小波基底对所述每个电极所对应的增强信号进行特征提取,得到所述每个电极所对应的多个特征序列,其中,所述多个小波基底中的部分小波基底为异常脑电波形所对应的波形基底;基于所述每个电极所对应的特征序列对所述脑电波信号中的异常信号进行分类,确定所述脑电波信号中的异常信号的放电时间,以及采集所述异常信号的目标电极;基于所述放电时间和所述目标电极对所述异常信号进行定位,得到定位位置。2.根据权利要求1所述的方法,其特征在于,在获取多个电极所采集到的目标对象在癫痫发作间期的脑电波信号之后,所述方法还包括:对所述每个电极所采集到的脑电波信号进行滤波处理,得到滤波后的脑电波信号;确定多个脑电导联模式下的参考电极,其中,不同的脑电导联模式用于检测不同癫痫种类的脑电波信号;在每个脑电导联模式下,计算所述每个电极所采集到的脑电波信号与所述参考电极之间的电压差,得到所述每个电极所对应的多个脑电波数字信号。3.根据权利要求2所述的方法,其特征在于,对每个电极所采集到的脑电波信号进行独立分量分析,从所述每个电极所采集到的脑电波信号中去除伪差信号,得到所述每个电极所对应的增强信号,包括:对所述每个电极所对应的多个脑电波数字信号进行独立分量分析,从所述每个电极所采集到的脑电波信号中确定所述伪差信号对应的特征分量;从所述每个电极所采集到的脑电波信号中去除所述伪差信号对应的特征分量,得到所述每个电极所对应的增强信号。4.根据权利要求3所述的方法,其特征在于,对所述每个电极所对应的多个脑电波数字信号进行独立分量分析,从所述每个电极所采集到的脑电波信号中确定所述伪差信号对应的特征分量,包括:基于所述每个电极所对应的多个脑电波数字信号构建第一多元线性时间序列;获取将所述第一多元线性时间序列转换为第二多元线性时间序列的转换矩阵,其中,所述第一多元线性时间序列与所述第二多元线性时间序列在空间上相互独立;获取所述转换矩阵的逆混合矩阵,并基于所述逆混合矩阵的行向量构建约束条件;构建所述第一多元线性时间序列所对应的多个初始分量的负熵函数;计算所述多个初始分量的负熵函数的平方和,得到目标优化函数;在所述约束条件下,对所述目标优化函数进行迭代处理,得到独立收敛的多个目标分量;根据所述多个目标分量与多个预设电极所采集的伪差信号之间的相关程度,从所述多个目标分量中确定所述伪差信号对应的特征分量,其中,所述多个预设电极用于采集不同类型的伪差信号。
5.根据权利要求1所述的方法,其特征在于,基于预设的多个小波基底对所述每个电极所对应的增强信号进行特征提取,得到所述每个电极所对应的多个特征序列,包括:确定每个小波基底所对应的位置参数以及目标频率范围,其中,所述位置参数用于表征对应小波基底所对应波形的位置,所述目标频率范围用于表征所述小波基底所对应波形的带宽;基于所述位置参数以及所述目标频率范围构建所述每个小波基底所对应的多个波形函数;计算所述多个波形函数与当前电极所对应的增强信号之间的内积,得到所述当前电极所对应的多个特征序列,其中,所述当前电极为所述多个电极中的任意一个电极。6.根据权利要求5所述的方法,其特征在于,在基于预设的多个小波基底对所述每个电极所对应的增强信号进行特征提取,得到所述每个电极所对应的多个特征序列之后,所述方法还包括:计算所述多个电极所对应的脑电波信号的强度平均值,得到第一平均强度;基于预设的高斯核函数计算所述第一平均强度所对应的核回归估计值;计算所述第一平均强度与所述核回归估计值的差值,得到核回归残差值;在预设宽度的窗函数下,基于所述核回归残差值计算所述核回归估计值的局部方差,得到所述多个电极所对应的脑电强度特征。7.根据权利要求6所述的方法,其特征在于,基于所述每个电极所对应的特征序列对所述脑电波信号中的异常信号进行分类,确定所述脑电波信号中的异常信号的...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。