一种集成温度监测结构的红外探测器制造技术

技术编号:37998726 阅读:11 留言:0更新日期:2023-06-30 10:12
本发明专利技术公开了一种集成温度监测结构的红外探测器,在红外材料的一侧制备红外探测器;在另一侧上制备用于温度监测的温度敏感单元。该温度敏感单元通过在红外材料上生长绝缘介质层和铬铂金属层结构,并制备电极区,将铬铂金属层的两端引出后测量电阻可以实时监测芯片的温度。本专利用于温度监测的温度敏感单元通过光刻、镀膜等技术进行制备,一致性好。这种温度敏感单元可以根据探测器结构对铬铂金属层结构进行调整,可达到准确测量红外探测器温度的效果。度的效果。度的效果。

【技术实现步骤摘要】
一种集成温度监测结构的红外探测器


[0001]本专利技术涉及一种集成温度监测结构的红外探测器。具体是指在红外探测器制备过程中,在红外材料的一侧制备红外探测器;在另一侧上利用光刻、镀膜等半导体制备技术制备用于温度监测的温度敏感单元。通过检测温度敏感单元的电阻来获知红外探测器的实时温度。

技术介绍

[0002]在半导体领域里,很多半导体元件都工作在一定的温度范围内,目前红外探测器元件的测温一般是采用市场上购买的铂电阻PT100或者PT1000,用胶水粘贴在元件附近进行测温。如果需要准确测量红外探测器元件的温度,铂电阻离元件应该越近越好,另外铂电阻的状态最好与元件保持一致,目前这种直接贴铂电阻的测温方法虽然很方便,但是由于粘贴的原因,一般测温铂电阻离芯片都有一定距离(>2mm),且测温铂电阻的状态与需要测温的半导体元件的状态有一定的差异,半导体元件在工作状态下属于温升状态,需要通过热传导一定的距离才能到达测温铂电阻。因此采用贴铂电阻的方法并不能很好的反映半导体元件的温度。尤其在红外探测器的应用领域,红外探测器一般都工作在低温下,红外探测器的性能受温度的影响十分严重,红外探测器工作时会发热,导致温度上升,由于铂电阻离探测器较远,通过粘贴铂电阻的方法来测试红外探测器的温度有时并不十分准确。

技术实现思路

[0003]本专利技术中的一种集成温度监测结构的红外探测器,是直接将可用于测温的铂电阻结构集成在红外探测器上,在红外探测器的制备过程中,利用光刻、镀膜等半导体制备技术,制备出测温结构。也就是铂电阻与红外探测器状态一致,能很好的反映红外探测器的温度。另外由于这种铂电阻测温结构可以根据红外探测器的外形调整测温结构,可用范围非常广泛。
[0004]集成温度监测结构的红外探测器结构为:
[0005]在红外材料层2的一侧有红外探测器光敏元1,在另一侧依次有绝缘层3、铬铂金属层4和铬金金属层5组成的温度敏感单元。
[0006]所述的温度敏感单元中的铬铂金属层4是由铬铂金属来回排布绕成的矩形结构,且铬铂金属层4的两端连接有铬金金属层5形成的与外部电路连接电极。
[0007]所述的铬铂金属层4是通过离子束溅射方法制备而成的厚度为0.3~0.6微米,宽度为10~30微米的铬铂金属层。
[0008]所述的红外材料层2是碲锌镉衬底上外延生长的碲镉汞层。
[0009]所述的绝缘层3是厚度0.3~0.5微米的SiO2层。
[0010]本专利技术中的一种集成温度监测结构的红外探测器具体步骤如下:
[0011]1.红外探测器制备完成后,利用光刻的方法,对探测器的光敏部分和电极部分采用光刻胶保护。
[0012]2.利用光刻及真空镀膜的方法,在红外探测器光敏区和电极区外的部分生长绝缘介质层。其作用是与红外探测器进行绝缘;绝缘层厚度太薄不能很好的绝缘,绝缘层太厚可能会影响膜层的可靠性,0.3~0.5微米为较为合适的厚度,厚度可根据工艺条件进行选择。
[0013]3.利用光刻和真空镀膜的方法,在绝缘介质层上生长温度监测结构的铬铂的金属层。铬层的作用是为了增加金属接触的可靠性;铂层就是专利技术中的温度监测结构(用测量铂层电阻的方法来测量探测器的温度),电阻的大小与铂层的厚度息息相关。
[0014]4.利用光刻和真空镀膜的方法生长温度监测结构的两个接触电极区。两个电极区分别与用于温度监测结构的两端连接,通过进行电极引出,从而可以对温度监测结构的电阻进行测试。
[0015]5.对温度监测结构进行温度标定。将温度监测结构的电极区的通过键压金丝的方法引出,测量不同温度下铂金属层的电阻,得到铂金属层的电阻的温度变化曲线,然后在红外探测器工作时,测量铂金属层的电阻与前期电阻温度曲线对照得到红外探测器的温度。
附图说明
[0016]图1是这种集成测温结构的红外探测器的剖面图。其中1为红外探测器,2为红外材料,3为绝缘层,4为铬铂金属层,5为铬金金属层。
[0017]图2是本专利技术实施例中集成测温结构的红外探测器的俯视图。
[0018]图3是本专利技术实施例中两个不同的测温结构的电阻随温度变化曲线。
具体实施例:
[0019]下面结合附图1对本专利技术的具体实施例进行进一步的说明。
[0020]1)半导体材料完成红外探测器的制备后清洗干净,光刻,在红外光敏元1以外的其它区域,生长绝缘层3,绝缘介质层为厚度为0.3微米SiO2层,与红外探测器绝缘。
[0021]2)在绝缘层3上离子束溅射生长20纳米厚的铬层和500纳米厚的铂层4。测温结构的铂金属层宽度为15微米,具体结构图如附图2所示。
[0022]从前期制备的经验来讲,铂金属层的宽度在10~30微米比较合适。
[0023]铂金属层的宽度小于10微米,铂金属层容易受到光刻工艺的影响,超过30微米,由于铂金属层宽度变大,铂电阻相应变小,在同样的温度变化下,铂电阻的变化会变小。
[0024]3)在铬铂金属层4两端生长铬金金属层5形成测温结构的电极区,铬层厚度为200纳米,金层厚度为2000纳米。用键压金丝的方法从电极区引出,测试不同温度下的电阻区电阻及可以获得电阻随温度的变化趋势。通过测试铂电阻的电阻即可以获得红外探测器的温度。
[0025]图3为同一批次制备完成的两个不同的红外探测器上的测温结构的电阻随温度的变化曲线。由于工艺过程中的均匀性的差异导致两个电阻的大小略有不同,但是可以看出两个结构的电阻随温度的变化趋势是一致的。
本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种集成温度监测结构的红外探测器,其特征在于:所述的红外探测器在红外材料层(2)的一侧有红外探测器光敏元(1),在另一侧依次有绝缘层(3)、铬铂金属层(4)和铬金金属层(5)组成的温度敏感单元。2.根据权利要求1所述的一种集成温度监测结构的红外探测器,其特征在于,所述的温度敏感单元中的铬铂金属层(4))是由铬铂金属来回排布绕成的矩形结构,且铬铂金属层(4)的两端连接有铬金金属层(5)形成的与外部电路连接电极。3.根据权利要求...

【专利技术属性】
技术研发人员:王妮丽赵水平周青兰添翼汤亦聃田启智李向阳
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1